

一个简单的 ∂ 脉冲源及其在表面声波 器件检测技术中的应用

陆 钟 楠 (南京大学声学研究所) 1982 年 6 月 25 日收到

我们利用高频高反压晶体三极管 3DA87 D,使之工作于雪崩击穿工作状态,构成了重复 频率可控的δ脉冲形成电路⁴⁰.如图1所示,当 在输入端A送人是有陡削前沿的正触发脉冲 时,在B端将输出δ脉冲,脉冲幅度大于40V, 底宽为3.5ns,其重复频率随触发脉冲的重复频 率而变。

图1 δ脉冲形成电路图

我们除利用该δ源进行常规的声表面波器 件的脉冲响应测量外,还用于测量非色散延迟 线的群延迟及时延差。 图 2 为测试框图,由 XC-15 脉冲发生器提供的触发脉冲,一路直接 送双踪示波器 Y₁ 通道,另一路用来开启δ脉 冲形成电路。δ脉冲送人被测器件后,器件的 输出(即其脉冲响应)送人示波器 Y₂ 通道。调 节脉冲发生器的重复频率,当上下两线脉冲对 准时,频率计数器读数的倒数即为该器件的群 延迟时间。图 3 为对一中心频率 70MHz 延迟
 XC-15
 ・ Y,

 脉冲发生器

 永波墨SS-5421
 示波墨SS-5421

线用上述方法测量群延迟的波形图.

图 2 群延迟测量方框图

图 3 所测群延迟的波形图

与作者 1978 年在全国第一届声表 面波 技 术交流会上报告的"群延迟的精确测量"相比, 其原理相同,精度与之相当,但本文所述方法与 设备都更为简便.

表1所列数据,为用上述方法对中心频率 为70MHz的同一延迟线所测得的数据. 十次 测量的平均值是943.4ns,此时示波器扫速置于 50ns/cm 档.

近年来,将 Ti、Nb 等元素以不同的温度、

• 41 •

应用声学

表1 中心频率为 70MHz 延迟线的测量数据

重复 频率 (kHz)	群延迟时间 (ns)
1059.3	944
1059.6	943.7
1059.6	943.7
1059.7	943.6
1059.9	943
1059.7	943.7
1060.0	943.3
1059.9	943.4
1060.0	943.4
1060.1	943.4

浓度等物理条件为参数,扩散到 LiNbO₃ 等压 电晶体材料中,通过 $\Delta V/V$ 的测量,研究其色 散特性.这方面的研究越来越得到人们的重视. 应用上述技术,只要对不同样品分别测出群延 迟值,就可以求出群延迟之差 Δr_g ,进而求出 $\Delta V/V$.除此之外,用图 4 所示方法,也可以方 便地测出 Δr_g .

当 δ 脉冲同时送入扩散和未扩散 试样 时, 由于声速不同,两试样的脉冲响应在示波器上 出现的时间有先有后。可直接在示波器上读出 差值 Δr_s.当叉指换能器处于基频激发状态时, 图中 LC 高通滤波器可省去,若处于高次倍频 激发,则必须用高通滤波器将基频响应滤去。

图 5 所示为 70MHz 叉指换能器处于 5 次 倍频激发时,在示波器上观察到的时延差.示 波器扫速为 10ns/cm,扫速误差 3%. 为消除

(上接第 52 页)

切 19.1°的频率特性曲线。 表明实验与理论 基本 相符。突出表现了三次型特征、尤其在接近室温时的一阶 TCD (时延温度系数),理论预测得相当精确。

表 3 声表面波速度 v、电声耦合系数 △v/v 的实验与理论的比较

取向	电声耦合系数 ムv/v×10 ⁻¹		声表面波速度 ≠m/s	
	实验值	理论值	实验值	理论值
 19.1°x切	0.14	0.118	2750	2740.7
18.5°柱×轴	0.15	0.128	2803	2782.0
80.4° 球×轴	0.11	0.123	2717	2744.8
双转动A	0.14	0.125	2738	2746.0
双转动 B	0.14	0.123	2754	2746.5

• 42 •

由于高通滤波器所形成的时延差,在测得一次 时延差值 Δr_{g1} 后,可将两通路中的滤波器交 换一次,再测一次时延差值 Δr_{g2} ,两次读数的 算术平均值,就是两试样之间的时延差值 Δr_{g} , 即 $\Delta r_{g} = (\Delta r_{g1} + \Delta r_{g2})/2$.

图 4 △7,测试框图

图5 在 fo = 350MHz 时测 ΔTg

作者对于昌明同志在本工作中所给予的支持和帮助表示 感谢。

文 獻

[1] 陆钟楠,电子应用技术,4(1981),59.

表二列出了各种切割的多项式系数和翻转温度。

实验测得的声表面波速度和电声耦合系数,在实 验误差范围内,与理论值符合得很好.

亚磷酸铝单晶结构类似石英.对五种切割声表面 波特性的研究表明:不仅是温度特性类似石英 ST 切 割,而且电声耦合系数比石英要高四倍.尤其是双转 动切割,除具有单转动切割的全部优点外,还有较好的 衍射特性.目前已有可能生长出高质量的亚磷酸铝单 晶,因此它将成为对宽带宽、低插损声表面波器件具有 吸引力的一种理想衬底材料.

> (孙承平 摘译自 Electro、Lett. 18-4(1982),168.)

> > 2卷4期