液-液界面上折射声束位移的实验验证

陈宇 邓伟 沈建国 黄杰 杨华

(清华大学物理系 北京 100084) 2001 年 1 月 17 日收到

摘要 对折射波束在液-液界面上的现象进行了数值和实验研究。结果表明: 当声束从声阻抗大的介质入射到液-液界面上时,折射声束会存在反向位移现象。 关键词 液-液界面, 声束位移, Schlieren 系统

Study of refracted beam-shift on liquid-liquid interface

CHEN Yu DENG Wei SHEN Jianguo HUANG Jie YANG Hua
(Department of Physics, Tsinghua University, Beijing 100084)

Abstract The phenomenon of refracted beam shift on a liquid-liquid interface is studied by using numerical and experimental methods. Result shows that when acoustical beam is incident from a medium with larger acoustical impedance, there exists a shift of the refracted beam.

Key words Liquid-liquid interface, Acoustical beam shift, Schlieren system

1 引言

波束在界面上的反射和折射现象一直是人们关心的研究问题。由于数学上描述界面上的波束比较复杂,有些现象不能用已知的平面波理论给予解释,如波束入射到界面上时反射波束相对于入射波束会有位移。 Goos 和Hanchen^[1] 在 1947 年首先观察到反射光波束在界面上的位移。几年后,Schoch^[2] 发表了他的实验观察结果: 在液固界面上,反射的超声波束存在位移现象。在文献 [3] 中给出了关于波束位移的一般理论。但由于波束理论的复杂性,目前仍有一些问题值得研究 ^[4,5]。在文章 [6] 中我们给出了一个折射声束位移的数值结

果,表明当声束从声阻抗大的液体入射到液-液界面上时,折射声束会存在反向位移现象。近来,我们利用 Schlieren 声波成像系统对折射波束在界面上的位移现象进行了研究,从实验中得到了和数值计算一致的结果。

2 数值结果

在讨论实验验证前,先简单介绍一下数值结果。不同于文献 [6] 的计算,在那里声源是线源,本文采用平面圆盘的声源,声束是圆盘上点源发出的球面波叠加的干涉极大。反射声束和透射声束分别是球面波的反射波和透射波的叠加。声束是用声压的等值分布图表达。我

们得到的入射声束、反射声束和折射声束严格 满足波动方程以及声压和位移分别连续的边界 条件.

因为是一个平面对称问题,我们可以只考虑在对称面 (y = 0)上的声场分布。如图 1,假定入射波在介质 1 中,透射波在介质 2 中,

声源表面的法线在 x-z 平面上,表面位移均匀分布。两种介质的密度分别用 ρ_1 和 ρ_2 表示,声速分别用 c_1 和 c_2 表示。不考虑反射问题,从文献 [6, 7] ,我们得到入射声束和透射声束的声压表达式:

$$P_i(x,z) = \int \int_{s'} \frac{\exp\left(\frac{\omega}{c_1}\sqrt{(x-x')^2 + y'^2 + (z-z')^2}\right)}{\sqrt{(x-x')^2 + y'^2 + (z-z')^2}} ds'$$
 (1)

$$P_t(x,z) = \int \int_{s'} ds' \int_0^\infty \frac{2\rho_1 \xi_1}{\rho_1 \xi_2 + \rho_2 \xi_1} \frac{P}{\xi_1} J_0(\omega pr) \exp(i\omega \xi_2 z - i\omega \xi_1 z') dp$$
 (2)

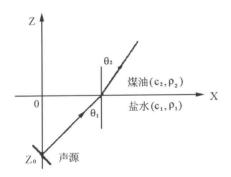
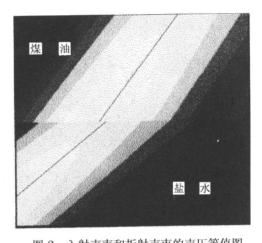
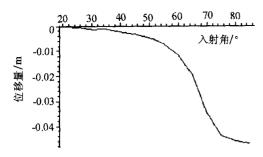


图 1 波東在液液中传播的示意图 (θ_1, θ_2) 分别表示入射角和折射角)

其中我们忽略了时间因子和振幅, $i = \sqrt{-1}$; $r = \sqrt{(x-x')^2 + y'^2}$; $\xi_n = (\frac{1}{c_n^2} - p^2)^{1/2}$ 表示 z 方向慢度, $\mathrm{IM}(\xi_n) > 0 (n=1,2, 分别$ 表示两种液体); ω 表示声源的角频率;积分变量 p 表示水平方向慢度; s' 表示声源面, (x',y',z') 表示声源面上的坐标点。

用解析的方法分析这些积分表达式是比较困难的,我们直接用数值分析的方法得到各声束的等声压模图。在积分过程中,对于球面波积分采用了 Gauss 自适应积分的方法,根据给定的积分误差自动调节积分步长。而对于面源的积分,采用二维 Gauss 积分方法。我们取两种液体分别为盐水和煤油。并对所用的介质的声学特性参数进行了测量,其结果为:盐水的密度 $\rho_1=1131 \text{kg/m}^3$,盐水的声速 $c_1=1702 \text{m/s}$;煤油的密度 $\rho_2=790 \text{kg/m}^3$,煤油的声速 $c_2=1305 \text{m/s}$;声源的频率 f=1.67 MHz,声源的




图 2 入射声束和折射声束的声压等值图

半径为 R = 0.007m ,声源中心的位置是 (0, 0, -0.06m)。

通过数值计算,我们得到入射和折射声束的声场分布图。图 2 给出 50°角入射时的入射声束和折射声束的等声压图。在垂直于传播方向的平面上,声压在声束的中心轴线上有极大值。在计算时,通过确定入射声束和折射声束的中心轴线的位置来比较声束的位移。在图中,我们将声束的中心线表示了出来。由图 2 可以看到,折射声束相对于入射声束产生的明显的反向位移。

如果我们定义折射声束中心轴线和界面法 线之间的夹角为折射角, 计算得到的折射角如 表1所示, 可以看出, 数值计算的折射角和 Snell 定律得到的结果比较, 差别小于 1°。同时, 我

21 卷 3 期 (2002)

折射声束位移随角度的变化图

表 1 折射声束的折射角

入射角	折射角				
	Snell 定律的结果	数值计算结果			
20.0	15.203150	15.176496			
30.0	22.542740	22.531783			
40.0	29.528352	29.471360			
50.0	35.969942	35.905639			
60.0	41.607236	41.767553			
70.0	46.096159	46.208003			
80.0	49.033796	49.033579			

们还计算出了声束位移随着入射角度的变化曲 线(图3),从图中可以看出,随着入射角度的 增加、声束的折射位移增大。

我们还可以给出在界面上入射和折射声场 的声压分布曲线。图 4 表示入射角是 50° 时界 面上的入射和折射声束的分布, 图中同时标示 出声场极值点的位置。由于声束的位置用声束 中心线的位置来表示, 而在界面上, 声束斜入射 而使声束的中心线和声压的极值点并不一致。 比较图 3(入射角为 50° 时的位移)和图 4,可 以看出,图 3 中位移约是 6mm,而图 4 中的 位移不到 3mm。入射和折射声束在界面上的 声压极值的偏移并不能很好的表示声束位移。

3 实验结果

为了验证数值结果, 我们采用 Schlieren 系 统进行了实验。光路是标准的 Schlieren 系统。两 种介质采用煤油和盐水。 声束的图象是用 CCD 摄像机采集的。声源是一个圆形的 PZT 换能 器、直径为 1.4cm 、中心频率是 1.67MHz. 我

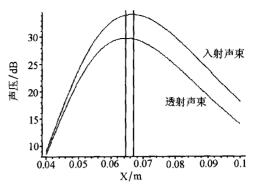


图 4 界面上入射和折射声束曲线 (入射角 50°)

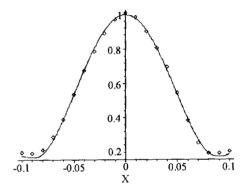


图 5 计算和实验声场分布比较 (距声源 10cm 处) 实线表示理论计算声场分布, 点表示实验值

们在水中测量了声场分布, 同时我们对声场分 布用式(1)作了理论计算,实验测量的声束 特性和理论计算的声束特性基本一致。图 5 中 表示的是在距离声源表面 10cm 处归一化的声 场分布图, 可以看出, 换能器的实验特性和计 算特性符合的很好。

在图 6 中声束是在盐水中入射。为了使折 射声束相对于入射声束的位移比较清楚的显示 在图中, 我们采用了较强的对比度, 所以反射 声束无法在相同的图中显示出来。虽然折射声 束在煤油中的声压级要小于在盐水中的声束声 压级, 但由于煤油的介电常数远大于盐水的介 电常数, 因此折射声束得到较亮的图象。图中 较宽的交界面是由于液体和水槽玻璃之间浸润 力造成的。实际的界面是界面线的下边线(如 图所示)。如果延伸折射波束的两条边线到液 - 液界面的下边线, 从实验结果图 6 可以定性

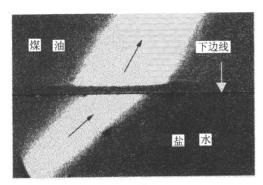


图 6 声束从盐水中入射,煤油中折射的 Schlieren 实验成象图(入射角 50°)

地看到: 相对于入射声束的两个边界, 折射声束的左边界比右边界有较大的偏移, 和图 2 中数值结果一致。

上面的结果表明,当声束从声阻抗大的液体中入射到液液界面上时,折射声束会存在反向位移现象。随着入射角度的增加,折射声束的位移也越大。这种位移是由于声束的有限宽度造成的。波束可以看成是平面波的叠加。由

于衍射效应,声束是发散的。入射声束中各分量对于界面的入射角度不单一。当平面波从盐水入射到煤油中,折射系数是实数其幅值是随入射角增加而单调减小。同样在声束中,入射角度大的分量,折射分量的幅值较小,因此使折射波束的中心发生偏移,即产生了波束位移。

在应用中,如果用波束在成层介质中进行检测时,要考虑到折射波束的位移。

参考文献

- 1 Goos F, Hanchen H. Ann. Phys., 1947, I: 333.
- 2 Schoch A. Acustica, 1952, (2): 17-19.
- 3 布列霍夫斯基赫. 分层介质中的波. 第二版. 北京: 科学 出版社, 1985.
- 4 诸国桢, 刘亮, 傅德永. 中国科学 (A 辑), 2000, 307: 653.
- 5 Briers R, Leroy O, Shkerdin G. J.Acoust.Soc.Am., 2000, 108(4): 1622.
- 6 陈宇, 黄杰, 周阳辛. 声学技术, 1997, 16(3): 125.
- 7 [美] 安艺敬一, P.G. 理查兹. 定量地震学 理论和方法, 北京: 地震出版社、1986.

(上接第 39 页)

混响时间数据见表 5。表 5 中同时还给出了声场不均匀度和背景噪声的测量数据。从表中看出,测试指标基本满足设计要求,但中高频混响偏低、这是因为甲方选购的座椅中高频吸声

系数偏大。

剧场通过两年多的使用,各方面反映良好,受到了使用单位的好评,并得到了广大少年儿童的喜爱。

表 5 声学测试数据

项目	条件	倍频程中心频率 (Hz)					
		125	250	500	1000	2000	4000
混响时间	空场	1.30	1.22	1.10	1.04	0.97	0.95
(s)	满场	1.12	1.03	0.91	0.85	0.76	0.74
声场分布	楼上	4.7	4.3	3.4	3.9	4.1	4.5
(dB)	楼下	6.4	5.7	4.6	4.1	4.9	4.5
背境噪声	不开空调	38.9	35.0	29.7	23.1	20.9	19.0
(dB)	开空调	42.5	34.8	26.3	24.1	21.0	18.0

参 考 文 献

- 1 项端祈. 剧场建筑声学设计实践. 北京: 北京大学出版社, 1990. 92-102.
- 2 项端祈. 音乐建筑 音乐. 声学. 建筑. 北京: 中国建筑 工业出版社, 1999. 138.
- 3 Bradley J S. Applied Acoustics, 1999, 55: 99–108.
- 4 项端析. 空调制冷设备消声与隔振. 北京: 中国建筑工业 出版社, 1990. 49-90.
- 5 厅堂扩声特性测量方法. 《中华人民共和国国家标准》 GB 4959-85.
- 6 项端祈, 王峥. 声学技术, 1988, (2).

21 卷 3 期 (2002)

. 28 .

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net