文章摘要
朱可卿,田杰,黄海宁,张扬帆.基于深度学习的船舶辐射噪声识别研究[J].,2018,37(2):238-245
基于深度学习的船舶辐射噪声识别研究
Ship-radiated noise recognition research based deep learning
投稿时间:2017-04-14  修订日期:2018-02-11
中文摘要:
      为了改善船舶辐射噪声识别系统的性能,进一步提高船舶辐射噪声识别的正确率,本文提出了一种基于深度学习的船舶辐射噪声识别方法。该方法首先提取了船舶辐射噪声的频谱、梅尔倒谱(MFCC)系数等特征,将提取特征后的图像样本分别用于训练卷积神经网络(CNN)和深度置信网络(DBN),再对船舶辐射噪声进行识别。通过与支持向量机(SVM)的识别方法的性能对比,结果证明,深度学习的方法可以有效地提高船舶辐射噪声识别的正确率的结论。
英文摘要:
      In order to improve the accuracy and the performance of ship-radiated noise recognition system, this paper introduce a method for ship-radiated noise recognition based deep learning. First, we extract the features of ship-radiated noise, such as spectrum feature, MFCC coefficients, etc. Then we train CNN and DBN with these feature-extracted noise image samples and recognize ship-radiated noise. After that we make a contrast with the performance of classification of SVM.The result shows that deep learning-based method in this paper can improve the accuracy of ship-radiated noise recognition effectively.
DOI:10.11684/j.issn.1000-310X.2018.02.009
中文关键词: 深度学习,卷积神经网络,深度置信网络,船舶辐射噪声识别
英文关键词: Deep learning, CNN, DBN, ship-radiated noise recognition
基金项目:
作者单位E-mail
朱可卿 中国科学院声学研究所 573510036@qq.com 
田杰* 中国科学院声学研究所 tianjie@mail.ioa.ac.cn 
黄海宁 中国科学院声学研究所  
张扬帆 中国科学院声学研究所  
摘要点击次数: 2311
全文下载次数: 3201
查看全文   查看/发表评论  下载PDF阅读器
关闭