文章摘要
李萍,宋波,毛捷,廉国选.深度学习在超声检测缺陷识别中的应用与发展*[J].,2019,38(3):458-464
深度学习在超声检测缺陷识别中的应用与发展*
Application and development of defect recognition using deep learning in ultrasonic testing
投稿时间:2018-09-07  修订日期:2019-04-26
中文摘要:
      深度学习(Deep Learning)是目前最强大的机器学习算法之一,其中卷积神经网络(Convolutional Neural Network, CNN)模型具有自动学习特征的能力,在图像处理领域较其他深度学习模型有较大的性能优势。本文先简述了深度学习的发展史,然后综述了深度学习在超声检测缺陷识别中的应用与发展,从早期浅层神经网络到现在深度学习的应用现状,并借鉴医学影像识别和射线图像识别领域的方法,分析了卷积神经网络对超声图像缺陷识别的适用性。最后,探讨归纳了目前在超声检测图像识别中使用CNN存在的一些问题,及其主要应对策略的研究方向。
英文摘要:
      Deep learning is one of the most powerful machine learning algorithms and convolutional neural network (CNN) can automatically extract features which outperforms other deep learning model in the field of image processing. We briefly describe the development history of deep learning, then summarize the application of deep learning in ultrasonic testing defect recognition which from the early shallow neural network to the deep learning. Learning from the field of medical image recognition and ray image recognition, we find that the convolutional neural network (CNN) is also suitable for ultrasonic image identification, so we propose to use it to identify the ultrasound images directly. Finally, we discuss the problems and practicable strategies in ultrasonic image recognition using CNN.
DOI:10.11684/j.issn.1000-310X.2019.03.025
中文关键词: 深度学习,超声检测,缺陷识别,卷积神经网络
英文关键词: Deep learning, Ultrasonic testing, Flaw recognition, Convolution neural network
基金项目:国家杰出青年科学基金项目 (11504403)
作者单位E-mail
李萍 中国科学院声学研究所 声场声信息国家重点实验室 北京 liping16@mails.ucas.ac.cn 
宋波* 中国科学院声学研究所 声场声信息国家重点实验室 songbo@mail.ioa.ac.cn 
毛捷 中国科学院声学研究所 声场声信息国家重点实验室 maojie@mail.ioa.ac.cn 
廉国选 中国科学院声学研究所 声场声信息国家重点实验室 廉国选@mail.ioa.ac.cn 
摘要点击次数: 2492
全文下载次数: 3476
查看全文   查看/发表评论  下载PDF阅读器
关闭