严良涛,项晓丽.基于核的k-最近邻在水下目标识别中的应用*[J].,2019,38(3):448-451 |
基于核的k-最近邻在水下目标识别中的应用* |
Application of k-NN based on Kernel in underwater target recognition |
投稿时间:2018-10-14 修订日期:2019-01-23 |
中文摘要: |
针对水中目标特征类型多、非线性强的特点,本文将K-KNN应用于水中目标识别。该方法采用PCA对特征矩阵进行降维,利用Kernel技巧将降维后的特征映射到高维空间进行KNN分类识别,并讨论了邻近点个数K对试验结果的影响。实际试验数据验证结果表明:与传统的KNN和BP神经网络分类器相比,K-KNN分类器的综合性能更优。 |
英文摘要: |
The targets underwater have many features and strong nonlinearity, this paper applies K-KNN to underwater target recognition.This method uses PCA to reduce the dimension of the feature matrix. Then the Kernel technique is used to map the reduced dimension to the high-dimensional space for KNN classification and recognition. The influence of the number K of adjacent points on the test results is discussed.The result of actual experimental data show that the K-KNN classifier has better overall performance than the traditional KNN and BP neural network classifiers. |
DOI:10.11684/j.issn.1000-310X.2019.03.023 |
中文关键词: 水中目标识别 K-KNN PCA 核函数 |
英文关键词: Underwater target recognition,K-KNN,PCA,Kernel |
基金项目:国家自然科学基金项目 (11774374) |
|
摘要点击次数: 1809 |
全文下载次数: 1362 |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |