文章摘要
张海如,汪俊,王海斌.基于并行蚁群算法的长基线定位方法*[J].,2019,38(5):845-850
基于并行蚁群算法的长基线定位方法*
Parallel ant colony algorithm for long baseline acoustic positioning
投稿时间:2018-11-29  修订日期:2019-09-02
中文摘要:
      为了降低各个误差源对水声目标导航定位精度的影响,本文将水声目标导航定位问题抽象为带约束条件的非线性优化问题,并论证了最优化表达式参数求解过程与降低误差源干扰的过程具有同一性;设计了并行蚁群算法求其最优解。海试数据处理结果表明,该方法具有收敛速度快、解稳定和定位精度高等优点,能有效地降低各个误差源对水声目标导航定位精度的影响。
英文摘要:
      In order to reduce the influence of various error sources on the navigation accuracy of underwater acoustic target, a novel LBL positioning algorithm is proposed, which abstracts the problem of underwater acoustic target navigation as a nonlinear optimization problem with constrained conditions. The analysis indicates that the parameter solving process of the optimization expression has the identity with the process of reducing error source interference. Then, its optimal solution is found by a parallel ant colony algorithm. The experimental results from sea trial data show that the proposed algorithm has the advantages of fast convergence speed, stable solution and high positioning accuracy. It can effectively reduce the influence of various error sources on navigation accuracy of underwater acoustic target.
DOI:10.11684/j.issn.1000-310X.2019.05.013
中文关键词: 长基线声学定位  导航定位  非线性优化  并行蚁群算法
英文关键词: long baseline (LBL) acoustic positioning  navigation and localization  Nonlinear optimization  parallel ant colony algorithm
基金项目:
作者单位E-mail
张海如* 中国科学院声学研究所声场声信息国家重点实验室 zhanghairu66@126.com 
汪俊 中国科学院声学研究所声场声信息国家重点实验室 wangjun@mail.ioa.ac.cn 
王海斌 中国科学院声学研究所声场声信息国家重点实验室 whb@mail.ioa.ac.cn 
摘要点击次数: 1538
全文下载次数: 1347
查看全文   查看/发表评论  下载PDF阅读器
关闭