褚钰,李田港,叶硕,叶光明.语音情感识别中的特征选择方法[J].,2020,39(2):223-230 |
语音情感识别中的特征选择方法 |
Research on feature selection method in speech emotion recognition |
投稿时间:2019-05-06 修订日期:2020-02-25 |
中文摘要: |
语音情感识别在许多领域具有重要研究价值,不同声学情感特征在使用不同分类器进行分类时,识别效果具有明显差异。与语音情感有关的声学特征包括谱特征、韵律学特征、音质特征,本文提出一种特征融合的方法,将三种声学特征中具有最好识别能力的特征进行融合:保留在实验中表现稳定且有较高识别率的谱特征的全部特征,提取韵律学、音质特征的相关统计量作为辅助特征融合于谱特征中。实验表明,本文所提出的融合特征在在使用同一分类器进行分类时,识别率优于单一特征;当使用不同分类器时,融合特征依然具有较好的识别能力,且识别性能稳定,三个数据集上均有较好的识别率,基本实现跨数据集识别。 |
英文摘要: |
Speech emotion recognition is of great value in many fields. The recognition effect of different emotion acoustic features is obviously different when different classifiers are used for classification. Acoustic features related to speech emotions include spectral features, rhythmic features and quality features. This paper proposes a method of feature fusion, which combines the features of the three acoustic features with the best recognition ability: All the features of the spectral features that are stable in the experiment and have a high recognition rate are retained, and the relevant statistics of the rhythmic features and quality features are extracted as auxiliary features and integrated into the spectral features. Experiments show that the fusion feature proposed in this paper is better than the single feature when using the same classifier for classification; when using different classifiers, the fusion feature still has better recognition ability and stable recognition performance. It has better recognition rate on three data sets and basically realizes cross-dataset recognition. |
DOI:10.11684/j.issn.1000-310X.2020.02.007 |
中文关键词: 语音识别 情感识别 特征选择 特征融合 |
英文关键词: speech recognition emotion recognition feature selection feature fusion |
基金项目:湖北省科技厅2018年度湖北省技术创新专项重大项目 |
|
摘要点击次数: 1955 |
全文下载次数: 2634 |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |