文章摘要
叶 瑾,许 枫,杨 娟,钟一宸.一种改进的时变转移概率AIMM跟踪算法[J].,2020,39(2):253-258
一种改进的时变转移概率AIMM跟踪算法
An improved AIMM tracking algorithm based on adaptive transition probability
投稿时间:2019-05-24  修订日期:2020-02-27
中文摘要:
      为了解决传统的交互式多模型(interacting multiple model,IMM)目标跟踪算法中马尔可夫概率转移矩阵固定不变,造成的模型切换缓慢、跟踪精度不高的问题,提出了一种基于后验信息修正的时变转移概率AIMM跟踪算法。算法定义了一种新的修正因子,利用后验信息对概率转移矩阵进行实时修正,提高匹配模型的概率,减小非匹配模型的影响,使得系统模型能够及时、准确地切换到匹配模型。蒙特卡洛仿真实验表明,本文AIMM算法能够应用于水下目标跟踪中,相比传统IMM算法,模型匹配度更高,滤波效果也更好。
英文摘要:
      In order to solve the problem that the Markov probability transition matrix is constant in the traditional interactive multiple model (IMM) target tracking algorithm, resulting in the slow model switching speed and low tracking accuracy. An improved AIMM tracking algorithm, based on adaptive transition probability, is proposed. The proposed algorithm introduces a new coefficient, which uses the posterior information to modify the probability transition matrix in real time, improve the probability of the matching model, and reduce the influence of the non-matching model, so that the system model can switch to the matching model in time and accurately. Monte Carlo simulation experiments show that the proposed algorithm has better model matching performance and better target tracking performance than the traditional IMM algorithm in underwater target tracking.
DOI:10.11684/j.issn.1000-310X.2020.02.011
中文关键词: 机动目标跟踪,交互式多模型,概率转移矩阵,后验信息,水下目标跟踪
英文关键词: Maneuvering target tracking, Interactive multiple model, Probability transition matrix, Posterior Information, Underwater target tracking
基金项目:国家自然科学基金项目(41527901)、国家重点研发计划(2017YFC0821202)、中国科学院战略性先导科技专项(XDA13030604)
作者单位E-mail
叶 瑾 中国科学院声学研究所 yejin@mail.ioa.ac.cn 
许 枫 中国科学院声学研究所 xufeng@mail.ioa.ac.cn 
杨 娟 中国科学院声学研究所 yangjuan@mail.ioa.ac.cn 
钟一宸 中国科学院声学研究所 zhongyichen@mail.ioa.ac.cn 
摘要点击次数: 105
全文下载次数: 54
查看全文   查看/发表评论  下载PDF阅读器
关闭