文章摘要
刘镇清,李成林,刘江韦,于岗.超声探伤信号的人工神经网络识别[J].,1997,16(2):14-17
超声探伤信号的人工神经网络识别
Flaw signature recognition in ultrasonic testing using artificial neural network
  
中文摘要:
      粗晶奥氏体不锈钢的超声探伤受到能否有效区分有用信号与背景噪声的限制,目前人们大多倾向使用频率分隔来提高缺陷回波比例.本文则介绍一种用傅里叶变换作特征提取、用前馈网络自动识别奥氏体钢中缺陷信号的方法.在作者的实验中.这种方法的正确识别率达到90%.
英文摘要:
      The effectiveness of ultrasonic detection in coarse-grained austenitic stainless steel is limited by whether it can seperate useful signals and background noise effectively.Presently, people mostly incline to improve the defect echo with the technique of frequen cy diversity. This paper introduces a method of signal processing which makes character istics extraction by Fourier Transform and use feedforward networks to identify the defect signal automatically. Experiments on austenitic steel samples are presented in which the correct identification ratio reaches 90 percent.
DOI:10.11684/j.issn.1000-310X.1997.02.004
中文关键词: 奥氏体不锈钢  频谱  人工神经网络
英文关键词: Austenitic stainless steel  Spectrtum  Artificial neural network
基金项目:国家自然科学基金;上海市教委青年学术基金
作者单位
刘镇清 同济大学声学研究所!上海
200092 
李成林 同济大学声学研究所!上海
200092 
刘江韦 同济大学声学研究所!上海
200092 
于岗 核工业无损检测中心 
摘要点击次数: 2337
全文下载次数: 855
查看全文   查看/发表评论  下载PDF阅读器
关闭