文章摘要
王梁,田杰,黄海宁,薛山花.基于超椭圆拟合的水下小目标分类*[J].,2019,38(4):697-704
基于超椭圆拟合的水下小目标分类*
Underwater small target classification based on superellipse fitting technology
投稿时间:2019-03-12  修订日期:2019-06-30
中文摘要:
      水下小目标分类技术在海底探测、水下考古等方面应用广泛,在实际的水下声图像中,小目标投影产生的阴影区域通常在形状和尺寸方面显著于目标本身产生的亮区,故阴影分析算法对于目标的检测、识别和分类均有重要的研究意义。本文采用超椭圆曲线拟合算法拟合目标阴影区域,通过控制超椭圆函数的几个参数变化,实现不同的超椭圆曲线拟合不同的目标阴影形状,并将控制超椭圆曲线尺寸、形状和位置的参数作为特征向量输入到分类器,通过对比多个分类器得出分类结果,证明了以拟合参数为特征的分类方法有效。
英文摘要:
      Underwater small target classification technology is widely used in seabed detection, archaeology and so on. In the actual underwater acoustic image, the shape and size of shadow area, which produced by underwater small target, are usually more significant than bright area generated by the target itself, so shadow analysis algorithms have important research value in detection, identification and classification of target. In this paper, the superellipse fitting algorithm is used to fit the shadow area of the target. By controlling several parameters of superellipse function, different superellipse curves can be used to fit different target shadow shape. The parameters controlling the size, shape and position of superellipse curve are input into the classifier as feature vectors. By comparing the classification results of several classifiers, it is proved that the classification method characterized by fitting parameters is effective.
DOI:10.11684/j.issn.1000-310X.2019.04.029
中文关键词: 水下小目标,目标阴影,超椭圆拟合,目标分类
英文关键词: Underwater small target, the shadow of target, Superellipse fitting, Target classification
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
作者单位E-mail
王梁 中国科学院声学研究所 18322735939@163.com 
田杰 中国科学院声学研究所 tianjie@mail.ioa.ac.cn 
黄海宁 中国科学院声学研究所 hhn@mail.ioa.ac.cn 
薛山花 中国科学院声学研究所 xsh@mail.ioa.ac.cn 
摘要点击次数: 70
全文下载次数: 67
查看全文   查看/发表评论  下载PDF阅读器
关闭