文章摘要
朱鸿茂,饶云华.应用BP神经网络识别内层表面细小缺陷的研究[J].,2001,20(5):12-15
应用BP神经网络识别内层表面细小缺陷的研究
Ultrasonic identification of the shapes of tiny pits on an internal surface using BP neural networks
  
中文摘要:
      内层表面细小凹坑的识别是扭声无损评估的一个难点.本文利用人工神经网络对于信号的分类功能,建构和训练了一个BP神经网络,并用它对尺寸为1mm的圆锥形和半球形两种凹坑成功地进行了识别.研究表明,应用凹坑回波的DCT 谱作为缺陷特征输入,可使BP神经网络的训练和缺陷识别既快捷又有效.
英文摘要:
      It is usually difficult to identify the tiny pits on an internal surface by ul trasonic nondestructive evaluation. Based on the classification ability of the artificial neural networks, a BP neural networks has been built, by which two kinds of pits are successfully identified. The research shows that using the DCT spectrum as the input of the networks enables the BP neural networks quick and effective in its training and identification.
DOI:10.11684/j.issn.1000-310X.2001.05.004
中文关键词: BP神经网络  圆锥形和半球形缺陷识别  DCT变换
英文关键词: BP neural networks  Conic and hemispherical pit identification  DCT transformation
基金项目:
作者单位
朱鸿茂 华中科技大学力学系 武汉 430074 
饶云华 华中科技大学力学系 武汉 430074 
摘要点击次数: 2572
全文下载次数: 818
查看全文   查看/发表评论  下载PDF阅读器
关闭