文章摘要
王炳和,相敬林.基于AR模型的人体脉象信号模糊聚类研究[J].,2001,20(5):21-25
基于AR模型的人体脉象信号模糊聚类研究
Fuzzy clustering of human body pulse signals based on AR model
  
中文摘要:
      根据一种新的模糊聚类方法 -F-PFSR(Fuzzy Pseudo F-Statistic Raio)聚类法,对人体 脉搏声信号(脉象信号)进行了聚类识别研究.首先对脉搏声信号作8阶AR模型拟合,模型系数 构成信号的特征集,其次采用K-L变换对特征集进行了压缩,最后对临床实测脉象信号进行了聚类 分析.实验结果表明,本文的聚类方法是可行和有效的.
英文摘要:
      The human body pulse signals are clustered on the basis of a new kind of fuzzy clustering method - F-PFSR Clustering Method. Firstly the pulse signals are processed with AR model, the coefficients of the AR model constituting the characteristic sets of the signals. Secondly the characteristic sets are compressed by K-L transform. Lastly the pulse signals measured in clinic are clustered and analyzed. Experimental results show that our clustering method is effective.
DOI:10.11684/j.issn.1000-310X.2001.05.007
中文关键词: 脉搏声信号  AR模型与K-L变换  F-PFSR聚类法
英文关键词: Pulse sound signal  AR model and K-L transform  F-PFSR clustering method
基金项目:国家自然科学基金资助项目;陕西省自然科学基金资助项目
作者单位
王炳和 武警工程学院物理室
西安710072 
相敬林 武警工程学院物理室
西安710072 
摘要点击次数: 2359
全文下载次数: 826
查看全文   查看/发表评论  下载PDF阅读器
关闭