姚炳廷,杨胜强,郭策,李秀红.超声搅拌磁流变抛光液的声场仿真分析[J].,2020,39(5):784-790 |
超声搅拌磁流变抛光液的声场仿真分析 |
Acoustic field simulation analysis of ultrasonic stirring magnetorheological polishing fluid |
投稿时间:2020-02-17 修订日期:2020-09-02 |
中文摘要: |
为了探究超声搅拌磁流变抛光液的制备及优化工艺,利用多物理场数值计算方法,建立了超声搅拌磁流变抛光液的声场仿真模型,并进行了频域分析。研究了不同液位深度、超声变幅杆探入深度,不同功率下磁流变抛光液的声场分布。通过测量磁流变抛光液的声场强度对声场仿真进行了验证。结果表明:随着距变幅杆距离的增加,声强逐渐减弱,高声强区域主要分布在换能器轴线附近。声强在距变幅杆20mm范围内急剧衰减,变幅杆最佳探入深度为10mm,增大功率有助于空化区域的扩大。声场仿真结果与实验测量结果基本一致,对磁流变抛光液的制备提供了数值计算基础。 |
英文摘要: |
In order to investigate the preparation and optimization of ultrasonic stirring magnetorheological polishing fluid, a multiphysics numerical calculation method was used to establish a sound field simulation model of ultrasonic stirring magnetorheological polishing fluid, and a frequency domain analysis was performed.The sound field distribution of different level depth, ultrasonic horn inlet depth and different power was studied.The intensity of a sound field under different test parameters was measured by using sound intensity measuring instrument point by point, and was verified with the sound field simulation model.The results demonstrate that the sound intensity gradually decreases with the increase of distance from the horn, and the region of the high sound intensity is mainly distributed near the axis of the horn.The sound intensity is attenuated sharply within a range of 20mm from the horn. The optimal penetration depth of the horn is 10mm. Increasing the power will help expand the cavitation area. Sound field simulation results are basically consistent with the experimental measurement results, providing a numerical calculation basis for the preparation of the magnetorheological polishing fluid. |
DOI:10.11684/j.issn.1000-310X.2020.05.018 |
中文关键词: 超声搅拌 磁流变抛光液 空化 声场分布 |
英文关键词: ultrasonic stirring magnetorheological polishing fluid cavitation sound field distribution |
基金项目:山西省应用基础研究计划项目(201901D211016)山西省高等学校科技创新项目(201802038) |
|
摘要点击次数: 1553 |
全文下载次数: 1356 |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |