文章摘要
李霞,桑恩方.一种递归神经网络空间分集均衡器[J].,2005,24(3):182-187
一种递归神经网络空间分集均衡器
A recurrent neural network spatial diversity equalizer
  
中文摘要:
      水声信道中的衰变多途特性常引起难以克服的码间干扰(ISI)。为了降低误码率、改善系统性能,本文提出了一种递归神经网络空间分集均衡器。它在传统的空间分集结构中融入了多层感知器,该结构能够充分利用训练信号的信息,在可调权数较少的情况下,能够得到较好的均衡效果;针对该结构,采取了初始设定权值的办法,从而使该均衡器的收敛速度得到大大提高。仿真与湖试试验结果表明,该均衡器结构合理,对空间分集均衡性能有一定的改善。
英文摘要:
      The fading and multipath underwater acoustic channels have always been great impediments to building reliable underwater communication systems. In order to improve the system performance and decrease the error probability a structure called the Recurrent Neural Network Spatial Diversity Equalizer (RNNSDE) is studied in this paper. We put a two-layer neural network into the conventional structure of the spatial diversity equalizer. The proposed structure can take full advantage of the training information, and better performance can be gained with a small amount of weights. By setting initial values of the adaptive weights for the structure, rapid convergence can be obtained. The simulation and field test results show that the proposed structure is reasonable and it can improve the performance of the spatial diversity equalizer.
DOI:10.11684/j.issn.1000-310X.2005.03.010
中文关键词: 空间分集均衡  神经网络  多层感知器
英文关键词: Spatial diversity equalizer  Neural network  Multilayer perceptron
基金项目:
作者单位
李霞 东南大学无线电工程系 南京 210096 
桑恩方 哈尔滨工程大学水声工程学院 哈尔滨 150001 
摘要点击次数: 2471
全文下载次数: 887
查看全文   查看/发表评论  下载PDF阅读器
关闭