文章摘要
马龙双,许枫,刘佳,蒋立军.改进次最佳检测在侧扫声呐底混响抑制中的应用*[J].,2021,40(1):147-148
改进次最佳检测在侧扫声呐底混响抑制中的应用*
Application of improved sub-optimal detection in the side-scan sonar bottom reverberation suppression
投稿时间:2020-04-26  修订日期:2020-12-31
中文摘要:
      底混响是侧扫声呐小目标检测的主要背景干扰,常认为它是一种非平稳的有色噪声,使得白噪声条件下的滤波器性能受到限制。在混响背景下常利用自回归(Auto-Regressive,AR)模型对接收信号进预行白化处理,但实际侧扫声呐应用中,白化后直接匹配滤波的处理效果不甚理想。针对此问题,在AR模型预白化的基础上,提出一种次最佳检测与多分辨二分奇异值分解(Multi-resolution binary singular value decomposition,MBSVD)相结合的改进方法。该方法首先利用自回归(Auto-Regressive,AR)模型构造白化滤波器对底混响进行预白化匹配滤波处理;然后对白化后的数据进行多分辨二分奇异值分解,并应用ostu方法对原始声图和处理后的声图进行目标检测。仿真与实验结果表明,该方法明显提高了信混比,改善了侧扫声呐沉底静态小目标的成图质量,更利于后期实现基于图像的目标自动检测。
英文摘要:
      Bottom reverberation is the main background interference of side-scan sonar target detection. It is often considered as a kind of non-stationary colored noise, which degrades the performance of the matched filter that is the optimum detector in white background noise.The received signals are used to be pre-whitened with the Auto-Regressive(AR)model in reverberation background,however,in actual side-scan sonar applications,the result is not satisfying under the background of strong reverberation.In order to solve the problem, based on the pre-whitening of the AR model, an improved method combining sub-optimal detection with multi-resolution binary singular value decomposition (MBSVD) is proposed.The algorithm contains three steps, constructing a whitening filter by AR model to pre-whitening the bottom reverberation,then performing multi-resolution binary singular value decomposition on the whitened data.Finally,the original image and processed acoustic image are processed by the ostu method.The simulation and experiment results show that the proposed method can improve the signal-to-reverberation ratio and the acoustic image quality of side-scan sonar.
DOI:10.11684/j.issn.1000-310X.2021.01.017
中文关键词: 侧扫声呐  底混响  自回归模型  多分辨二分奇异值分解
英文关键词: Side-scan sonar  Bottom reverberation  Auto-Regressive model  Multi-resolution binary singular value decomposition
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
作者单位E-mail
马龙双* 中国科学院声学研究所 mlsaixia@163.com 
许枫 中国科学院声学研究所  
刘佳 中国科学院声学研究所  
蒋立军 中国科学院声学研究所  
摘要点击次数: 1392
全文下载次数: 1764
查看全文   查看/发表评论  下载PDF阅读器
关闭