文章摘要
万伊,杨飞然,杨军.基于Transformer编码器的合成语音检测系统[J].,2023,42(1):26-33
基于Transformer编码器的合成语音检测系统
Transformer encoder-based spoofing countermeasure for synthetic speech detection
投稿时间:2021-11-08  修订日期:2022-12-22
中文摘要:
      自动说话人认证系统是一种常用的目标说话人身份认证方案,但它在合成语音的攻击下表现出了脆弱性,合成语音检测系统试图解决这一问题。本文提出了一种基于Transformer编码器的合成语音检测方法,利用自注意力机制学习输入特征内部的长期依赖关系。合成语音检测问题并不关注句子的抽象语义特征,用参数量较小的模型也能得到较好的检测性能。本文分别测试了四种常用合成语音检测特征在Transformer编码器上的表现,在国际标准的ASVspoof2019挑战赛的逻辑攻击数据集上,基于线性频率倒谱系数特征和Transformer编码器的系统等错误率与串联检测代价函数分别为3.13%和0.0708,且模型参数量仅为0.082M,在较小参数量下得到了较好的检测性能。
英文摘要:
      The automatic speaker verification system is a commonly used solution for target speaker identity authentication, but it shows vulnerability under the attack of synthetic speech, which can be alleviated by a spoofing countermeasure system. In this paper, we introduce a synthetic speech detection method based on the Transformer encoder, which uses the self-attention mechanism to learn the long-term dependencies of the input features. Synthetic speech detection does not focus on the abstract semantic features of the sentences, and a model with small parameters can also performs well. This paper evaluated the performance of four commonly used synthetic speech detection features on Transformer encoders. On the evaluation set of the ASVspoof2019 challenge logical access scenario, the proposed system based on linear frequency cepstral coefficient features and Transformer encoder achieves an equal error rate (EER) of 3.13% and a tandem detection cost function (t-DCF) of 0.0708, respectively, and the parameters of the model is only 0.082M, a better detection performance is obtained with a smaller model.
DOI:10.11684/j.issn.1000-310X.2023.01.004
中文关键词: 自动说话人认证  合成语音检测  Transformer编码器
英文关键词: automatic speaker verification  synthetic speech detection  transformer encoder
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
作者单位E-mail
万伊 中国科学院声学研究所噪声与振动重点实验室 wanyi@mail.ioa.ac.cn 
杨飞然 中国科学院声学研究所噪声与振动重点实验室 feiran@mail.ioa.ac.cn 
杨军* 中国科学院声学研究所噪声与振动重点实验室 jyang@mail.ioa.ac.cn 
摘要点击次数: 581
全文下载次数: 707
查看全文   查看/发表评论  下载PDF阅读器
关闭