马雪飞,李胤,吴英姿,赵春雨,吴燕妮,Waleed Raza.基于高斯混合概率假设滤波的水下目标跟踪算法*[J].,2023,42(2):249-259 |
基于高斯混合概率假设滤波的水下目标跟踪算法* |
Underwater target tracking algorithm based on Gaussian mixture probability hypothesis density filter |
投稿时间:2021-12-22 修订日期:2023-02-15 |
中文摘要: |
为了解决传统水下目标跟踪中目标数目估计不准确、状态估计误差增长过快的问题,提出了一种基于高斯混合概率假设滤波的水下目标跟踪算法。该算法基于双基地观测模型,采用高斯混合概率假设滤波算法处理方位和时延信息,利用粒子群算法处理多普勒频率获得矢量速度,进一步提升算法的跟踪精度。结果表明,该算法能完成在杂波环境下对目标的跟踪,相比传统的关联算法,能够有效地实现目标个数估计和抑制状态误差增长的目的。 |
英文摘要: |
In order to solve the problem that number of targets estimated is inaccurate and error of state estimation increases too fast in traditional underwater target tracking, an underwater target tracking algorithm based on Gaussian mixture probability hypothesis density filtering is proposed. The algorithm is based on the bistatic observation model, which the Gaussian mixture probability hypothesis density filtering algorithm is used to bearings and time-delay information and particle swarm optimization algorithm is used to process the Doppler frequency to calculate the feedback vector velocity for improving the tracking accuracy of the algorithm. The results show that the algorithm can track targets in clutter environment, and can effectively achieve the purpose of estimating the number of targets and suppressing the growth of state estimation error compared with the traditional association algorithm. |
DOI:10.11684/j.issn.1000-310X.2023.02.007 |
中文关键词: 水下目标跟踪,量测信息,高斯混合概率假设滤波,粒子群算法 |
英文关键词: Underwater target tracking,Measurement information,Gaussian mixture probability hypothesis density filterr,Particle swarm optimization |
基金项目:(中国船舶重工集团公司第701研究所)(JJ-2020-701-08);多器材Z协同综合D技术(MC00918);西安市科技计划项目(2020KJWL14);边境跨水空监测预警技术(XZ202101ZY0001F) |
|
摘要点击次数: 955 |
全文下载次数: 629 |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |