文章摘要
张书文,侯猛,刘泽华,张锦龙.呼吸声分类技术研究及检测系统设计*[J].,2023,42(3):659-666
呼吸声分类技术研究及检测系统设计*
Research on respiratory sound classification technology and detection system design
投稿时间:2022-02-24  修订日期:2023-04-16
中文摘要:
      患有呼吸问题的病人由于呼吸道腺体不受意识控制、异物或者其本身肺部病变等原因会出现呼吸异常。医护人员通过病人的呼吸状况可以找寻和分析病人出现这种呼吸状况的原因。而以往呼吸声的诊断方式是专业的医护人员通过使用听诊器对病人进行肺部听诊。但是听诊的结果取决于医护人员的经验与相关参数。在初级诊断治疗阶段,初级医生识别听诊声的效率以及准确率很低,一般从20%到80%不等。因此会存在10%到20%的高误诊率(漏诊、错诊和延误)。本文提出了一种利用PVDF薄膜传感器提取语声特征的检测系统,该检测系统根据病人发出声音的不同,提取呼吸声特征值判断病人的呼吸状况。通过PVDF传感器采集的微弱呼吸声再经过KNN算法分类之后其识别率可达90.6%,对于细分种较类多的湿罗声,其识别率在80.2%左右。综上表明相比于传统听诊方式通过PVDF传感器采集识别的结果具有更高的准确性和可靠性,其判断呼吸状况的结果可以为医护人员提供参考,更好的为患有呼吸疾病的病人提供监测。
英文摘要:
      Patients with respiratory problems may experience breathing abnormalities due to unconsciousness of respiratory glands, foreign matter or their own lung lesions. Medical staff can find and analyze the cause of the patient’s respiratory condition through the patient’s respiratory condition. In the past, the diagnosis method of respiratory sound was that professional medical staff auscultation the patient’s lungs by using stethoscope. However, the result of auscultation depends on the experience and relevant parameters. In the primary diagnosis and treatment stage, the efficiency and accuracy of primary doctors in identifying auscultation sounds are very low, generally ranging from 20% to 80%. Therefore, there will be a high misdiagnosis rate of 10% to 20% (missed diagnosis, wrong diagnosis and delay diagnosis). In this paper, a detection system using PVDF thin film sensor to extract speech features is proposed. According to the different sounds of patients, the eigenvalues of sounds are extracted to judge the respiratory status of patients. The weak respiratory sound signal collected by PVDF sensor and then learned by KNN(K-Nearest-Neighbor)algorithm can reach a recognition rate of 90.6%. For wet rales with more subdivision types, the recognition rate is about 80%. In conclusion, compared with the traditional auscultation method, the results collected and identified by PVDF sensor have higher accuracy and reliability. the judging respiratory status can provide reference for medical staff and better provide monitoring for patients with respiratory diseases.
DOI:10.11684/j.issn.1000-310X.2023.03.026
中文关键词: 呼吸异常  薄膜传感器  声音特征  呼吸状态
英文关键词: Abnormal breathing  Thin film sensor  Voice features  Respiratory state
基金项目:
作者单位E-mail
张书文* 河南大学物理与电子学院 995049021@qq.com 
侯猛 河南大学物理与电子学院  
刘泽华 河南大学物理与电子学院  
张锦龙 河南大学物理与电子学院  
摘要点击次数: 478
全文下载次数: 667
查看全文   查看/发表评论  下载PDF阅读器
关闭