文章摘要
桑汉德,陈爽,张家豪,赵夙,李荣和.超声辅助加工系统的刀具状态自感知算法*[J].,2023,42(4):746-755
超声辅助加工系统的刀具状态自感知算法*
Tool state self-sensing algorithm used for ultrasonic assisted machining system
投稿时间:2022-04-06  修订日期:2023-07-01
中文摘要:
      刀具状态监测技术是实现智能制造的关键,对保证加工质量、提高加工效率具有重要意义。超声辅助加工通过在传统加工基础上,对刀具或者工件叠加高频超声振动,提高切削效率,改善工件表面质量。超声波振动台内含压电材料,可以拾取切削过程产生的振动信号,实现不借助外部传感器刀具工作状态的自感知。为了从刀具振动信号中获取有效信息,本文提出一种基于经验模态分解的时频域重构算法(Time and Frequency domain Empirical Mode Decomposition, TF-EMD)。首先,采用经验模态分解算法将原始信号分解,得到多个固有模态函数(Intrinsic Mode Function, IMF)分量和残差分量;其次,计算原始信号与各分量之间的时频域互相关系数;再次,归一化时频域互相关系数作为权重值,将IMF分量和残差进行重构;最后,通过数值仿真和超声辅助加工实验,验证了TF-EMD算法的去噪性能,提取了信噪比为5.03dB的目标信号,从而实现了超声辅助加工系统的自感知功能。
英文摘要:
      Tool condition monitoring technology is the key to realize intelligent manufacturing, and it is of great significance to ensure processing quality and improve processing efficiency. Through superimposing high-frequency ultrasonic vibration on the tool or workpiece, ultrasonic assisted machining increases the cutting efficiency and improves the surface quality of the workpiece. Due to containing piezoelectric material, the ultrasonic vibration table can pick up the vibration signal generated by the cutting process, and realize the self-sensing of the working state of the tool without additional sensors. In order to extract the active ingredients from the tool vibration signal, a time and frequency domain reconstruction algorithm based on empirical mode decomposition (TF-EMD) is proposed. Firstly, the original signal is decomposed into multiple intrinsic mode function (IMF) components and the residual by empirical mode decomposition algorithm. Secondly, the cross-correlation coefficients are calculated between the original signal and decomposed results in both time domain and frequency domain. Thirdly, the weighted factors are obtained by normalizing cross-correlation coefficients, and the IMF components and residual are reconstructed through the obtained weighted factors. Finally, numerical simulation and ultrasonic assisted machining experiment are carried out to verify the denoising performance of the TF-EMD algorithm. The signal with a signal-to-noise ratio of 5.03dB is extracted, thus the self-sensing of the ultrasonic assisted machining system is realized.
DOI:10.11684/j.issn.1000-310X.2023.04.010
中文关键词: 超声辅助加工  自感知技术  经验模态分解  互相关系数  时频域权重
英文关键词: ultrasonic assisted machining  self-sensing technology  empirical mode decomposition  cross-correlation coefficient  time-frequency domain weighted factors
基金项目:浙江省“尖兵”“领雁”研发攻关计划项目(2022C01114)、宁波市3315创新团队超声冲击处理技术与装备(Y80929DL04)、浙江省自然科学基金(LQ22E010011)、宁波市自然科学基金(202003N4356, 2021J221)
作者单位E-mail
桑汉德 江西理工大学机电工程学院
中国科学院宁波材料技术与工程研究所 
sanghande@126.com 
陈爽* 江西理工大学机电工程学院 chenshuang826@126.com 
张家豪 中国科学院宁波材料技术与工程研究所 zhangjiahao@nimte.ac.cn 
赵夙 中国科学院宁波材料技术与工程研究所 zhaosu@nimte.ac.cn 
李荣和 江西理工大学机电工程学院
中国科学院宁波材料技术与工程研究所 
lironghe @nimte.ac.cn 
摘要点击次数: 1105
全文下载次数: 557
查看全文   查看/发表评论  下载PDF阅读器
关闭