文章摘要
李大鹏,周晓彦,王基豪,王丽丽,叶如.基于Mel频谱值和深度学习网络的鸟声识别算法*[J].,2023,42(4):825-832
基于Mel频谱值和深度学习网络的鸟声识别算法*
Bird voice recognition algorithm based on Mel spectrum value and deep learning network
投稿时间:2022-04-25  修订日期:2023-07-07
中文摘要:
      为了增强网络对鸟鸣声信号的特征学习能力并提高识别精度,提出一种基于深度残差收缩网络和扩张卷积的鸟声识别方法。首先,提取鸟鸣声信号的对数梅尔特征及其一阶和二阶差分系数组成logMel特征集作为网络模型的输入;其次,通过深度残差收缩网络自动学习噪声阈值,减少噪声干扰;然后,引入扩张卷积增大卷积核感受野并利用注意力机制使网络更关注关键帧特征;最后,通过双向长短时记忆网络从学到的局部特征中学习长期依赖关系。以百鸟数据birdsdata鸟声库中的19种中国常见鸟类作为实验对象,识别正确率可以达到96.58%,并对比模型在不同信噪比数据下的识别结果,结果表明该模型在噪声环境下的识别效果优于现有模型。
英文摘要:
      In order to enhance the feature learning ability of the network to the birdsong signal and improve the recognition accuracy, a birdsong recognition method based on depth residual shrinkage network and expanded convolution is proposed. Firstly, the logarithmic Mel feature and its first-order and second-order difference coefficients of birdsong signal are extracted to form a logmel feature set as the input of the network model; Secondly, the noise threshold is automatically learned through the depth residual shrinkage network to reduce the noise interference; Then, the expanded convolution is introduced to increase the receptive field of convolution kernel, and the attention mechanism is used to make the network pay more attention to the characteristics of key frames; Finally, the long-term dependence is learned from the learned local features through the two-way long-term and short-term memory network. Taking 19 kinds of common Chinese birds in birdsdata as the experimental object, the recognition accuracy can reach 96.58%. Compared with the recognition results of the model under different signal-to-noise ratio data, the results show that the recognition effect of the model in noise environment is better than that of the existing model.
DOI:10.11684/j.issn.1000-310X.2023.04.018
中文关键词: 鸟声识别  logMel特征  DRSN  扩张卷积神经  注意力机制
英文关键词: bird song recognition  logMel feature  DRSN  dilated convolutions  attention mechanism
基金项目:
作者单位E-mail
李大鹏 南京信息工程大学 2801882418@qq.com 
周晓彦* 南京信息工程大学 xiaoyan_zhou@nuist.edu.cn 
王基豪 南京信息工程大学 1090947435@qq.com 
王丽丽 南京信息工程大学 2799270957@qq.com 
叶如 南京信息工程大学 1185454881@qq.com 
摘要点击次数: 568
全文下载次数: 944
查看全文   查看/发表评论  下载PDF阅读器
关闭