文章摘要
任露露,尹力,巩文静,李宝奇,黄海宁.点云投影结合轻量化卷积神经网络实现三维成像声呐快速目标分类*[J].,2024,43(1):47-57
点云投影结合轻量化卷积神经网络实现三维成像声呐快速目标分类*
Point cloud projection combined with lightweight convolutional neural network realizes fast target classification of 3D imaging sonar
投稿时间:2022-08-10  修订日期:2024-01-02
中文摘要:
      三维成像声呐的成像结果是三维点云,基于点云的三维成像声呐目标分类方法具有网络结构复杂,计算量大的特点,针对这一问题本文提出了一种将三维成像声呐成像结果从三维点云投影至二维图像的方法,并且使用轻量化卷积神经网络实现了三维成像声呐快速目标分类。该方法首先对三维成像声呐波束形成后的波束域数据进行最大值滤波和阈值滤波,降低点云数据维度;接着,依据三维成像声呐的波束方向,将点云投影为深度图和强度图,分别保存点云的位置信息和强度信息;然后,利用深度图和强度图分别作为第一个通道和第二个通道构建混合通道图,将混合通道图作为目标分类网络的输入,从而将三维点云的目标分类问题转换为二维图像的目标分类问题;最后使用MobileNetV2网络实现了三维成像声呐快速目标分类。实验结果表明,通过本文提出的投影方法可以用二维图像分类网络完成三维成像声呐点云的目标分类任务;而且混合通道图比单独的强度图和深度图收敛速度更快,结合目标识别网络可以25fps实时的进行目标分类,在真实数据集上分类精度达到了91.13%。
英文摘要:
      The imaging result of the three-dimensional(3D) imaging sonar is a point cloud, and the network of point cloud target recognition is characterized by complex network structure and large computation, we propose a method to project the imaging result of three-dimensional imaging sonar from a point cloud to an image, and use lightweight convolutional neural networks to achieve fast target classification for three-dimensional imaging sonar. Firstly, the method performs maximum filtering and threshold filtering on the beam domain data after the beamforming of the 3D imaging sonar beam to reduce the dimensionality of the point cloud; next, based on the beam direction of the 3D imaging sonar, the point cloud is projected to a depth image and an intensity image to save the point cloud position information and intensity information respectively; then, the mixed image is constructed using the depth image and the intensity image as the first channel and the second channel, and the mixed image is used as the input of the target classification network, thus converting the target classification problem of 3D point clouds into the target classification problem of images. Finally, 3D imaging sonar fast target classification was implemented using MobileNetV2. The experimental results show that the projection method proposed in this paper can be used to complete the target classification task of three-dimensional imaging sonar point cloud by an image classification network. Moreover, the convergence speed of the mixed image is faster than that of the depth image and intensity image alone. Combined with the target recognition network, the target can be classified at 25fps in real-time, and the classification accuracy on the real dataset reaches 91.13%.
DOI:10.11684/j.issn.1000-310X.2024.01.006
中文关键词: 三维成像声呐  波束形成  声呐图像处理  目标分类
英文关键词: Three-dimensional imaging sonar  Beamforming  Sonar image processing  Object classification
基金项目:中国科学院国防科技重点实验室基金项目 (CXJJ-20S035)
作者单位E-mail
任露露 声学研究所 renlulu@mail.ioa.ac.cn 
尹力 声学研究所 yl@mail.ioa.ac.cn 
巩文静 声学研究所 gongwenjing@mail.ioa.ac.cn 
李宝奇 声学研究所 libaoqi@mail.ioa.ac.cn 
黄海宁* 声学研究所 hhn@mail.ioa.ac.cn 
摘要点击次数: 1008
全文下载次数: 727
查看全文   查看/发表评论  下载PDF阅读器
关闭