文章摘要
赵玉琦,李婧,董德秀,黄鑫章,陈振华,卢超.改进Faster R-CNN的大型铸造不锈钢机匣超声相控阵检测图像的缺陷智能识别*[J].,2025,44(2):497-504
改进Faster R-CNN的大型铸造不锈钢机匣超声相控阵检测图像的缺陷智能识别*
Improved Faster R-CNN for the Intelligent Recognition of Defects in Ultrasonic Phased Array Inspection Images of Large Cast Stainless Steel Casing
投稿时间:2023-10-23  修订日期:2025-02-28
中文摘要:
      大型铸造不锈钢机匣的超声相控阵检测技术具有检测能力强、检测效率高的优势。然而,相控阵图像中显示的缺陷类型仍需检测人员判读,存在主观性强、易误判、效率低、可靠性不足等问题。据此,提出基于深度学习的机匣超声相控阵检测图像缺陷类型的自动识别方法。首先,采集机匣典型铸造缺陷的超声相控阵图像,对缺陷图像扩充并制备数据集;其次,在Faster R-CNN深度学习网络的特征提取网络、多层特征信息融合网络、感兴趣区域模块等方面进行优化改进;最后,对比分析改进前后深度学习网络模型的缺陷识别与分类准确率。结果表明:相比于与原始常规Faster R-CNN深度学习网络,在采用深度残差网络、特征金字塔网络、区域一致性池化等优化措施后,平均准确率均值提高至95.3%,模型对缺陷图像的识别精度得到了有效的提高;改进的Faster R-CNN目标识别算法克服了超声相控阵缺陷图像人工识别与分类的问题,具有较好的工程应用价值。
英文摘要:
      The ultrasonic phased array testing technology for large stainless steel machine boxes has the advantages of strong detection capability and high detection efficiency. However, the defect types displayed in the phased array images still need to be judged by the testing personnel, leading to problems such as strong subjectivity, easy misjudgment, low efficiency, and lack of reliability. In response to this, an automatic identification method for detecting image defect types of machine box ultrasonic phased array based on deep learning is proposed. Firstly, ultrasonic phased array images of typical casting defects of the machine box are collected, and the defect images are augmented to prepare the dataset. Secondly, optimization and improvement are carried out in the feature extraction network, multi-layer feature fusion network, and region of interest module of the Faster R-CNN deep learning network. Finally, the defect recognition and classification accuracy of the deep learning network model before and after the optimization are compared and analyzed. The results show that, compared with the conventional Faster R-CNN deep learning network, the average accuracy has increased to 95.3% after the use of optimization measures such as deep residual network, FPN, and region consistency pooling, and the model''s accuracy in identifying defect images has been effec-tively improved. The improved Faster R-CNN target recognition algorithm overcomes the problem of manual recognition and classification of phased array defect images and has good engineering ap-plication value.
DOI:10.11684/j.issn.1000-310X.2025.02.025
中文关键词: 超声相控阵检测  改进Faster-RCNN  缺陷智能识别
英文关键词: Ultrasonic phased array testing  Improved Faster-RCNN  Intelligent defect recognition  
基金项目:国家科技重大专项J2019-VII-0002-0142)经费资助,国家市场监督管理总局科技计划项目(2021Mk065)
作者单位E-mail
赵玉琦 南昌航空大学 1319763901@qq.com 
李婧 中国航发沈阳黎明航空发动机有限责任公司 lijing888101@163.com 
董德秀 中国航发沈阳黎明航空发动机有限责任公司 ddx410@sina.com 
黄鑫章 南昌航空大学 1939037371@qq.cim 
陈振华* 南昌航空大学 zhenhuachen@yeah.net 
卢超 南昌航空大学 luchaoniat@163.com 
摘要点击次数: 24
全文下载次数: 13
查看全文   查看/发表评论  下载PDF阅读器
关闭