文章摘要
戴卫国,邱家兴,王易川,程玉胜.基于多分类支持向量机的船舶桨叶数识别研究[J].,2015,34(3):236-242
基于多分类支持向量机的船舶桨叶数识别研究
Ship propeller blade number classification based on multi-class support vector machine
投稿时间:2014-09-01  修订日期:2015-04-19
中文摘要:
      分析了目前常用的支持向量机多分类方法以及存在的不足,本文提出了一种混合纠错输出编码的多分类支持向量机改进算法,并应用于利用船舶目标辐射噪声DEMON谱进行船舶桨叶数分类的实验。理论分析与实验结果表明,该改进算法编码明确、具备纠错能力,是一种有效的多分类支持向量机方法,在船舶桨叶数识别中,其分类性能优于一对余、一对一及最小输出编码支持向量机等多分类方法,可适用于船舶桨叶数的分类识别。
英文摘要:
      The paper first analyzes the common multi-class support vector machine (SVM) classification algorithms and points out the disadvantages of these algorithms, and then presents an advanced multi-class SVM classification algorithm based on mix error correcting out code (MECOC). Experiment of ship propeller blade number classification which is based on DEMON spectrum of ship target radiated noise has been done by using this algorithm. Theoretical and experimental results show that the proposed algorithm with clear code and error correction ability is an efficient multi-class SVM classification algorithm. In the ship propeller blade number classification experiment, the classification performance of this algorithm is better than one-versus-all, one-versus-one and minimum output coding (MOC) multi-class SVM classification algorithm, which is suitable for ship propeller blade number classification problem.
DOI:10.11684/j.issn.1000-310X.2015.03.008
中文关键词: 船舶辐射噪声,支持向量机,多分类,螺旋桨桨叶数
英文关键词: ship-radiated noise  support vector machine  multi-class  propeller blade number  
基金项目:
作者单位E-mail
戴卫国 海军潜艇学院 青岛 266042 dwg1968@163.com 
邱家兴 海军潜艇学院 qiujx8701@126.com 
王易川 海军潜艇学院 wyc_nice@sohu.com 
程玉胜 海军潜艇学院 chengyusheng@yahoo.com 
摘要点击次数: 613
全文下载次数: 437
查看全文   查看/发表评论  下载PDF阅读器
关闭