文章摘要
郭海涛,刘星洁,石建宏.贝叶斯改进阈值超声图像去噪方法[J].,2012,31(6):468-474
贝叶斯改进阈值超声图像去噪方法
Denoising ultrasound imagings based on an improved BayesShrink threshold method
投稿时间:2012-05-21  
中文摘要:
      针对超声图像散斑噪声,提出一种贝叶斯改进阈值超声图像去噪方法。超声图像质量下降的主要原因是乘性噪声的污染,采用Jain提出的噪声模型,完成对数化后的小波变换,假设小波系数服从广义高斯分布,估计各尺度的贝叶斯阈值,利用改进的阈值函数处理各小波系数。所用改进阈值函数较软阈值函数有更好的连续性且不易丢失小波系数。处理医学超声图像和声纳超声图像的结果表明,较之以往的去噪方法,该方法在去除噪声的同时能较好的保留边缘及细节特征。
英文摘要:
      To solve speckle noise in ultrasound imagings, a denoising method was proposed based on an improved BayesShrink threshold. The main reason for ultrasound imaging degeneration is speckle noise. We adopted Jain’s speckle noise model to carry out our scheme. Wavelet transform coefficients are acquired on coefficients of logarithmically transformed ultrasound imaging. Under the assumption that the statistics of wavelet coefficients is Generalized Gaussian Distribution(GGD), BayesShrink threshold is calculated for each high frequency subband, and wavelet coefficients are modified using improved threshold method. The improved threshold method is better than soft threshold method in preserving wavelet coefficients owing to its continuity. The results of the experiments show that the method proposed is better than previous onesin preserving edges and details.
DOI:10.11684/j.issn.1000-310X.2012.06.010
中文关键词: 超声图像,去噪,小波变换,贝叶斯阈值,阈值函数
英文关键词: Ultrasound imagings, Denoising, Wavelet transform, BayesShrink, Threshold function
基金项目:国家自然科学基金(41076060), 东北电力大学博士科研启动基金(BSJXM-201001), 东北电力大学2011年度研究生创新基金(15)
作者单位
郭海涛 东北电力大学电气工程学院 吉林 132012
 
刘星洁 东北电力大学自动化工程学院 吉林 132012
 
石建宏 东北电力大学校医院 吉林 132012 
摘要点击次数: 2042
全文下载次数: 553
查看全文   查看/发表评论  下载PDF阅读器
关闭