文章摘要
陈彦华,李明轩.利用人工神经网络实现缺陷类型识别[J].,1998,17(2):1-4,10
利用人工神经网络实现缺陷类型识别
Classification of flaws through an artificial neural network
  
中文摘要:
      本文在对各向同性均匀固体中横穿孔、平底孔和裂缝缺陷超声散射特性分析的基础上,分别用回波幅度话和去卷积幅度措作为特征量,利用人工神经网络对缺陷类型进行识别.结果表明,用去卷积幅度谱作为特征量时,利用人工神经网络对这三类缺陷的类型识别,可获得较理想的结果.
英文摘要:
      In this paper, the scattering characteristics of an ultrasonic wave in a homegeneous solid by three types of flaw are considered the three types being the traversecylindrical cavily, the blat-bottom hole and the plane crack. The flaws are then classifiedby a neural network on using the respectively amplitude spectra of ultrasonic echoes andthose of deconvolved ultrasonic echoes as characteristic features. It is demonstrated thatthe latter improve greatly the classification accuracy.
DOI:10.11684/j.issn.1000-310X.1998.02.001
中文关键词: 人工神经网络  缺陷类型识别  去卷积
英文关键词: Artifical neural network  Classifcation of flaws  Deconvolution
基金项目:国家自然科学基金;中国科学院声学研究所资助
作者单位
陈彦华 中国科学院声学研究所!北京
100080 
李明轩 中国科学院声学研究所!北京
100080 
摘要点击次数: 1858
全文下载次数: 170
查看全文   查看/发表评论  下载PDF阅读器
关闭