Page 192 - 应用声学2019年第4期
P. 192

652                                                                                  2019 年 7 月


             [13] He Y J, Sun G L, Han J Q. Spectrum enhancement with  negative matrix factorization with Gaussian mixtures and
                 sparse coding for robust speech recognition[J]. Digital Sig-  masking model for speech enhancement[J]. Speech Com-
                 nal Processing, 2015, 43: 59–70.                  munication, 2017, 87: 18–30.
             [14] Zhang L, Bao G Z, Zhang J, et al. Supervised single-  [20] Jeon K M, Kim H K. Local sparsity based online dictio-
                 channel speech enhancement using ratio mask with joint  nary learning for environment-adaptive speech enhance-
                 dictionary learning[J]. Speech Communication, 2016, 82:  ment with nonnegative matrix factorization[C]. INTER-
                 38–52.                                            SPEECH, 2016.
             [15] Lee D D, Seung H S. Algorithms for non-negative matrix  [21] Kwon K, Shin J W, Kim N S. NMF-based speech en-
                 factorization[J]. Advances in Neural Information Process-  hancement using bases update[J]. IEEE Signal Processing
                 ing Systems, 2001: 556–562.                       Letters, 2015, 22(4): 450–454.
             [16] Févotte C, Idier J. Algorithms for nonnegative matrix fac-  [22] Rangachari S, Loizou P C. A noise-estimation algorithm
                 torization with the β-divergence[J]. Neural Computation,  for highly non-stationary environments[J]. Speech Com-
                 2011, 23(9): 2421–2456.                           munication, 2006, 48(2): 220–231.
             [17] Grais E M, Emad H E. Hidden Markov models as priors  [23] Aharon M, Elad M, Bruckstein A, et al. K-SVD: an algo-
                 for regularized nonnegative matrix factorization in single-  rithm for designing of overcomplete dictionaries for sparse
                 channel source separation[C]. INTERSPEECH, 2012.  representation[J]. IEEE Transactions on Signal Process-
             [18] Wilson K W, Raj B, Smaragdis P. Regularized non-  ing, 2006, 54(11): 4311–4322.
                 negative matrix factorization with temporal dependencies  [24] Lee D D, Seung H S. Learning the parts of objects by
                 for speech denoising[C]. INTERSPEECH, 2008.       nonnegative matrix factorization[J]. Nature, 1999, 401:
             [19] Chung H, Plourde E, Champagne B. Regularized non-  788–791.
   187   188   189   190   191   192   193   194   195   196   197