Page 295 - 应用声学2019年第4期
P. 295
第 38 卷 第 4 期 郑援等: 船舶辐射噪声信号仿真及评价 755
制谱和听觉特征的脉冲包络信号,将其调制到仿真 [7] 王二庆, 王华奎. 船舶噪声合成与听觉感知分析 [J]. 电声技
信号上;最后,叠加从实测信号中提取的线谱特征分 术, 2014, 38(3): 65–69.
Wang Erqing, Wang Huakui. Ship noise synthesis and
量,生成最终的仿真信号。对船舶辐射噪声仿真信
analysis of auditory perception[J]. Audio Engineering,
号进行仿真度评价时,首先分别针对上述 4 个特征 2014, 38(3): 65–69.
提取指标参数并进行仿真度评价,然后对各特征仿 [8] 唐兵, 朱艳, 陈卫东. 基于实测噪声信号的舰船辐射噪声重
真度进行加权相加,得到仿真信号的总体仿真度评 构 [J]. 舰船科学技术, 2012, 34(11): 148–151.
Tang Bing, Zhu Yan, Chen Weidong. Reconstruction of
价值。数据试验结果显示,本文方法得到的仿真信
ship radiated noise based on measured noise signal[J]. Ship
号具有较高的特征仿真度,且与计算的仿真度评价 Science and Technology, 2012, 34(11): 148–151.
数值一致。 [9] 郑援, 姜斌, 刘启军. 船舶实测辐射噪声信号的调制谱重构仿
此外,本文方法得到的船舶辐射噪声仿真信号 真 [J]. 电声技术, 2016, 40(8): 40–43.
Zheng Yuan, Jiang Bin, Liu Qijun. Reconstruction and
主要作为信源信号使用,以信号本身特征为重构重 simulation of measured ship radiated noise’s modulation
点,数据试验采用的是近场实测船舶辐射噪声信号。 spectrum[J]. Audio Engineering, 2016, 40(8): 40–43.
如果要将信号作为声呐等接收设备的输入使用,还 [10] 何正耀, 张翼鹏. 舰船辐射噪声建模及仿真研究 [J]. 电声技
术, 2005, 29(12): 52–55.
需要考虑信道传递函数的影响。信道对信号不同频
He Zhengyao, Zhang Yipeng. Modeling and simulation re-
率成分的衰减不同,将导致接收信号的连续谱分布、 search of ship-radiated noise[J]. Audio Engineering, 2005,
线谱特性、调制深度、听觉清晰度等与信源信号不 29(12): 52–55.
完全相同,因而,针对接收设备实际接收信号的仿真 [11] 梁民赞, 王旭升, 李志伟. 舰船辐射噪声动态特性建模与重
构 [J]. 舰船电子工程, 2008, 28(2): 95–97, 149.
与评价将成为下一步需要开展的工作。
Liang Minzan, Wang Xusheng, Li Zhiwei. Modeling and
reconstruction of dynamic characteristics of ship radiated
noise[J]. Ship Electronic Engineering, 2008, 28(2): 95–97,
参 考 文 献
149.
[12] 李琴, 苑秉成, 张文娟. 舰船辐射噪声建模及仿真模拟器的实
[1] 郑援, 胡成军, 宋汝刚. 船舶航行辐射噪声信号仿真方法研 现 [J]. 舰船科学技术, 2010, 32(4): 121–124, 133.
究 [J]. 信号处理, 2016, 32(1): 14–20. Li Qin, Yuan Bingcheng, Zhang Wenjuan. Modeling of
Zheng Yuan, Hu Chengjun, Song Rugang. On the sim- ship-radiated noise and its implement of simulator[J]. Ship
ulation of vessel navigation noises[J]. Journal of Signal Science and Technology, 2010, 32(4): 121–124, 133.
Processing, 2016, 32(1): 14–20. [13] 王娜, 陈克安. 听觉感知特征在目标识别中的应用 [J]. 系统仿
[2] Zheng Y, Li Z, Jiang B. Similarity evaluation of ship radi- 真学报, 2009, 21(10): 3128–3132.
ated noise’s continuous spectrum[C]. Proceedings of 2018 Wang Na, Chen Kean. Applications of auditory percep-
IEEE 14th International Conference on Signal Processing, tual features into targets recognition[J]. Journal of System
Beijing, 2018: 1024–1027. Simulation, 2009, 21(10): 3128–3132.
[3] 张宇. 舰船宽带连续谱特征监测技术 [J]. 舰船科学技术, [14] 张宇, 刘雨东, 计钊. 向量相似度测度方法 [J]. 声学技术,
2011, 33(3): 104–108. 2009, 28(4): 532–536.
Zhang Yu. Research on feature monitoring technology of Zhang Yu, Liu Yudong, Ji Zhao. Vector similarity mea-
warship radiated noise continuous spectrum[J]. Ship Sci- surement method[J]. Technical Acoustics, 2009, 28(4):
ence and Technology, 2011, 33(3): 104–108. 532–536.
[4] 邹辽章, 朱艳, 陈刚. 舰船辐射噪声仿真模型置信度分析 [J]. [15] 邱家兴, 程玉胜, 张惊丞. 船舶噪声 DEMON 谱质量评估方
水雷战与舰船防护, 2017, 25(4): 28–33. 法 [J]. 舰船科学技术, 2014, 36(9): 46–49.
Zou Liaozhang, Zhu Yan, Chen Gang. Analysis on confi- Qiu Jiaxing, Cheng Yusheng, Zhang Jingcheng. Study
dence of simulation model of ship’s radiated noise[J]. Mine of ship-radiated noise DEMON quality assessment meth-
Warfare & Ship Self-defence, 2017, 25(4): 28–33. ods[J]. Ship Science and Technology, 2014, 36(9): 46–49.
[5] 曹红丽, 方世良. 舰船辐射噪声的响度和音色特征模型 [J]. 东 [16] 王森, 王余, 王易川, 等. 水下高速目标声谱图特征提取及分
南大学学报 (自然科学版), 2013, 43(2): 241–246. 类设计 [J]. 电子与信息学报, 2017, 39(11): 2684–2689.
Cao Hongli, Fang Shiliang. Loudness and timbre features Wang Sen, Wang Yu, Wang Yichuan, et al. Feature ex-
model of ship radiated noise[J]. Journal of Southeast Uni- traction and classification of spectrum of radiated noise of
versity(Natural Science Edition), 2013, 43(2): 241–246. underwater high speed vehicle[J]. Journal of Electronics &
[6] 王金昌, 陈克安. 基于听觉感知的不同航速稳态舰船噪声合 Information Technology, 2017, 39(11): 2684–2689.
成 [J]. 声学技术, 2012, 31(5): 453–458. [17] 朱可卿, 田杰, 黄海宁, 等. 基于深度学习的船舶辐射噪声识
Wang Jinchang, Chen Kean. Auditory perception based 别研究 [J]. 应用声学, 2018, 37(2): 238–245.
steady ship noise synthesis at different speeds[J]. Techni- Zhu Keqing, Tian Jie, Huang Haining, et al. Ship-radiated
cal Acoustics, 2012, 31(5): 453–458. noise recognition research based deep learning[J]. Journal
of Applied Acoustics, 2018, 37(2): 238–245.