Page 143 - 《应用声学》2020年第3期
P. 143

第 39 卷 第 3 期            杨春勇等: 融合声纹信息的能量谱图在鸟类识别中的研究                                          463


             [12] Stowell D, Benetos E, Gill L F. On-bird sound record-  South Korea: Springer, 2007: 828–837.
                 ings: automatic acoustic recognition of activities and con-  [20] 张东波, 陈治强, 易良玲, 等. 图像微观结构的二值化表示与
                 texts[J]. IEEE/ACM Transactions on Audio Speech &  目标识别应用 [J]. 电子与信息学报, 2018, 40(3): 633–640.
                 Language Processing, 2017, 25(6): 1193–1206.      Zhang Dongbo, Chen Zhiqiang, Yi Liangling, et al. Bi-
             [13] Grosche P, Serrà J, Müller M, et al. Structure-based audio  narization representation of image microstructure and the
                 fingerprinting for music retrieval[C]. International Society  application of object recognition[J]. Journal of Electronics
                 for Music Information Retrieval, 2012.            and Information Technology, 2018, 40(3): 633–640.
             [14] Wu M, Ren J. Mirex 2011 submission-combining visual  [21] 周柯. 基于 HOG 特征的图像人体检测技术的研究与实现 [D].
                 and acoustic features for music genre classification[C]. In-
                                                                   武汉: 华中科技大学, 2008.
                 ternational Conference on Machine Learning & Appli-
                                                                [22] Chen D, Cao X, Wen F, et al. Blessing of dimensional-
                 cations & Workshops.  IEEE Computer Society, 2014:
                                                                   ity: high-dimensional feature and its efficient compression
                 124–129.
                                                                   for face verification[C]// Computer Vision and Pattern
             [15] Nanni L, Costa Y M G, Lumini A, et al. Combining vi-
                                                                   Recognition. IEEE, 2013: 3025–3032.
                 sual and acoustic features for music genre classification[J].
                                                                [23] Lowe D G. Distinctive image features from scale-invariant
                 Expert Systems with Applications, 2016, 45(C): 108–117.
                                                                   keypoints[J]. International Journal of Computer Vision,
             [16] Su X, Lin W, Zheng X, et al. A new local-main-gradient-
                                                                   2004, 60(2): 91–110.
                 orientation HOG and contour differences based algorithm
                                                                [24] 唐贤伦, 杜一铭, 刘雨微, 等. 基于条件深度卷积生成对抗网
                 for object classification[C]// IEEE International Sympo-
                                                                   络的图像识别方法 [J]. 自动化学报, 2018, 44(5): 855–864.
                 sium on Circuits and Systems. IEEE, 2013: 2892–2895.
                                                                   Tang Xianlun, Du Yiming, Liu Yuwei, et al.  Image
             [17] Bisot V, Essid S, Richard G. HOG and subband power
                 distribution image features for acoustic scene classifica-  recognition with conditional deep convolutional generative
                 tion[C]// Signal Processing Conference.  IEEE, 2015:  adversarial networks[J]. Acta Automatica Sinica, 2018,
                                                                   44(5): 855–864.
                 719–723.
             [18] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-  [25] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Gen-
                 scale and rotation invariant texture classification with  erative adversarial nets[C]// International Conference on
                 local binary patterns[J]. IEEE Transactions on Pattern  Neural Information Processing Systems, 2014.
                 Analysis and Machine Intelligence, 2002, 24(7): 971–987.  [26] Medhat F, Chesmore D, Robinson J. Masked conditional
             [19] Liao S, Zhu X, Lei Z, et al. Learning multi-scale block lo-  neural networks for environmental sound classification[C].
                 cal binary patterns for face recognition[C]. Proceedings of  International Conference on Innovative Techniques and
                 the 2007 International Conference on Bio-metrics. Seoul,  Applications of Artificial Intelligence, 2017.
   138   139   140   141   142   143   144   145   146   147   148