Page 96 - 《应用声学》2020年第3期
P. 96

416                                                                                  2020 年 5 月


                 and GMM[J]. Transactions of Beijing Institute of Tech-  24–32.
                 nology, 2014, 34(7): 716–722.                  [13] 程小伟, 王健, 曾庆宁, 等. 噪声环境下稳健的说话人识别特
              [6] 刘鑫锦, 苏国韶, 冯夏庭, 等. 基于声音信号的室内岩爆动态                  征研究 [J]. 声学技术, 2017, 36(5): 479–483.
                 预测方法 [J]. 岩土力学, 2018, 39(10): 3573–3580.          Cheng Xiaowei, Wang Jian, Zeng Qingning, et al. A study
                 Liu Xinjin, Su Guoshao, Feng Xiating, et al.  Dy-  of robust speaker recognition feature under noisy environ-
                 namic prediction method of laboratory rockburst using  ment[J]. Technical Acoustics, 2017, 36(5): 479–483.
                 sound signals[J]. Rock and Soil Mechanics, 2018, 39(10):  [14] 林正青, 邱梦然. 水中目标窄带噪声识别的听觉外周模型 [J].
                 3573–3580.                                        声学学报, 2016, 41(6): 881–890.
              [7] 苏国韶, 刘鑫锦, 闫召富, 等. 岩爆预警与烈度评价的声音信                  Lin Zhengqing, Qiu Mengran.  An auditory periphery
                 号分析 [J]. 爆炸与冲击, 2018, 38(4): 716–724.
                                                                   model for underwater target narrow-band noise recogni-
                 Su Guoshao, Liu Xinjin, Yan Zhaofu, et al.  Sound  tion[J]. Acta Acustica, 2016, 41(6): 881–890.
                 signal analysis for warning and intensity evaluation of
                                                                [15] 李靓, 孙存威, 谢凯, 等. 基于深度学习的小样本声纹识别方
                 rockburst[J]. Explosion and Shock Waves, 2018, 38(4):
                                                                   法 [J]. 计算机工程, 2019, 45(3): 262–267, 272.
                 716–724.
                                                                   Li Jing, Sun Cunwei, Xie Kai, et al.  Small sample
              [8] 张铁民, 黄俊端. 基于音频特征和模糊神经网络的禽流感病鸡
                                                                   voiceprint recognition method based on deep learning[J].
                 检测 [J]. 农业工程学报, 2019, 35(2): 168–174.
                                                                   Computer Engineering, 2019, 45(3): 262–267, 272.
                 Zhang Tiemin, Huang Junduan. Detection of chicken in-
                                                                [16] 张少康, 田德艳. 水下声目标的梅尔倒谱系数智能分类方
                 fected with avian influenza based on audio features and
                                                                   法 [J]. 应用声学, 2019, 38(2): 267–272.
                 fuzzy neural network[J]. Transactions of the Chinese So-
                                                                   Zhang Shaokang, Tian Deyan. Intelligent classification
                 ciety of Agricultural Engineering, 2019, 35(2): 168–174.
                                                                   method of Mel frequency cepstrum coefficient for under-
              [9] 韩磊磊, 田建艳, 张苏楠, 等. 基于决策树支持向量机和模糊推
                                                                   water acoustic targets[J]. Journal of Applied Acoustics,
                 理的生猪异常声音识别 [J]. 畜牧与兽医, 2019, 51(3): 38–44.
                                                                   2019, 38(2): 267–272.
                 Han Leilei, Tian Jianyan, Zhang Sunan, et al. Porcine ab-
                                                                [17] 陈超, 齐峰. 卷积神经网络的发展及其在计算机视觉领域中的
                 normal sounds recognition using decision-tree-based sup-
                                                                   应用综述 [J]. 计算机科学, 2019, 46(3): 63–73.
                 port vector machine and fuzzy inference[J]. Animal Hus-
                                                                   Chen Chao, Qi Feng. Review on development of convo-
                 bandry & Veterinary Medicine, 2019, 51(3): 38–44.
                                                                   lutional neural network and its application in computer
             [10] 杨元威, 关永刚, 陈士刚, 等. 基于声音信号的高压断路器
                                                                   vision[J]. Computer Science, 2019, 46(3): 63–73.
                 机械故障诊断方法 [J]. 中国电机工程学报, 2018, 38(22):
                 6730–6737.                                     [18] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述 [J]. 计算机学
                 Yang Yuanwei, Guan Yonggang, Chen Shigang, et al.  报, 2017, 40(6): 1229–1251.
                                                                   Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolu-
                 Mechanical fault diagnosis method of high voltage cir-
                 cuit breaker based on sound signal[J]. Proceedings of the  tional neural network[J]. Chinese Journal of Computers,
                 CSEE, 2018, 38(22): 6730–6737.                    2017, 40(6): 1229–1251.
             [11] 王丰华, 王邵菁, 陈颂, 等. 基于改进 MFCC 和 VQ 的变            [19] 崔佳旭, 杨博. 贝叶斯优化方法和应用综述 [J]. 软件学报,
                 压器声纹识别模型 [J]. 中国电机工程学报, 2017, 37(5):              2018, 29(10): 3068–3090.
                 1535–1543.                                        Cui Jiaxu, Yang Bo. Survey on Bayesian optimization
                 Wang Fenghua, Wang Shaojing, Chen Song, et al.    methodology and applications[J]. Journal of Software,
                 Voiceprint recognition model of power transformers based  2018, 29(10): 3068–3090.
                 on improved MFCC and VQ[J]. Proceedings of the CSEE,  [20] 任婷玉, 梁中耀, 刘永, 等. 基于贝叶斯优化的三维水动
                 2017, 37(5): 1535–1543.                           力 -水质模型参数估值方法 [J]. 环境科学学报, 2019, 39(6):
             [12] 周萍, 沈昊, 郑凯鹏. 基于 MFCC 与 GFCC 混合特征参数的              2024–2032.
                 说话人识别 [J]. 应用科学学报, 2019, 37(1): 24–32.            Ren Tingyu, Liang Zhongyao, Liu Yong, et al. The pa-
                 Zhou Ping, Shen Hao, Zheng Kaipeng. Speaker recogni-  rameters estimation method based on Bayesian optimiza-
                 tion based on combination of MFCC and GFCC feature  tion for complex water quality models[J]. Acta Scientiae
                 parameters[J]. Journal of Applied Sciences, 2019, 37(1):  Circumstantiae, 2019, 39(6): 2024–2032.
   91   92   93   94   95   96   97   98   99   100   101