Page 49 - 《应用声学》2022年第4期
P. 49

第 41 卷 第 4 期             钟华等: 激光超声的多模式合成孔径聚焦成像仿真分析                                          547


             D1∼D3)成像,选择横波反射横波 (SS 波) 对近表层                       [9] Pei C, Demachi K, Zhu H, et al. Numerical simulation of
             以下缺陷 (缺陷 D4∼D9) 成像。与传统单模式成像                           phased-array laser ultrasound and its application for de-
                                                                   fect inspection[J]. International Journal of Applied Elec-
             相比,多模组合成像方法可实现伪像消除、盲区减
                                                                   tromagnetics and Mechanics, 2012, 39(1–4): 405–411.
             小和成像质量的提升。此外,还对缺陷 D1、D7、D9                         [10] Pei C, Fukuchi T, Haitao Z, et al. A study of internal
             同时存在的情况进行了仿真并成像,成像效果与理                                defect testing with the laser-EMAT ultrasonic method[J].
                                                                   IEEE Transactions on Ultrasonics, Ferroelectrics and Fre-
             论预测基本一致。但仿真成像未考虑实际使用时噪                                quency Control, 2012, 59(12): 2702–2708.
             声等其他因素的影响,后续将进行多模组合成像方                             [11] Stratoudaki T, Clark M, Wilcox P D. Laser induced ultra-
             法的实验验证,且目前的多模组合成像方法的区域                                sonic phased array using full matrix capture data acquisi-
                                                                   tion and total focusing method[J]. Optics Express, 2016,
             划分还较为粗糙,还需进一步优化以提升该成像方                                24(19): 21921.
             法的适用范围。                                            [12] Stratoudaki T, Clark M, Wilcox P D. Adapting the full
                                                                   matrix capture and the total focusing method to laser ul-
                                                                   trasonics for remote non destructive testing[C]. 2017 IEEE
                                                                   International Ultrasonics Symposium (IUS), 2017: 1–4.
                            参 考     文   献
                                                                [13] Chen J, Xiao J, Lisevych D, et al. Laser-induced full-
                                                                   matrix ultrasonic imaging of complex-shaped objects[J].
              [1] He Y, Zhang W. Review on the development of non-  IEEE Transactions on Ultrasonics Ferroelectrics Fre-
                 destructive testing based on laser ultrasonic technique[C].  quency Control, 2019, 66(9): 1514–1520.
                 ASME 2014 International Manufacturing Science and En-  [14] Holmes C, Drinkwater B, Wilcox P. The post-processing
                 gineering Conference, MSEC 2014 Collocated with the  of ultrasonic array data using the total focusing
                 JSME 2014 International Conference on Materials and  method[J]. Insight-Non-Destructive Testing and Condi-
                 Processing and the 42nd North American Manufacturing  tion Monitoring, 2004, 46(11): 677–680.
                 Research Conference, 2014, 45813: V002T02A095.  [15] 李俊燕, 沈中华, 倪晓武, 等. 基于合成孔径聚焦技术的激光
              [2] 沈中华, 袁玲, 张宏超, 等. 固体中的激光超声 [M]. 北京: 人             超声无损检测方法研究 [J]. 中国激光, 2018, 45(9): 269–275.
                 民邮电出版社, 2015.                                     Li Junyan, Shen Zhonghua, Ni Xiaowu, et al.  Laser-
              [3] Zhou Z, Zhang K, Zhou J, et al. Application of laser  ultrasonic non-destructive detection based on synthetic
                 ultrasonic technique for non-contact detection of struc-  aperture focusing technique[J]. Chinese Journal of Lasers,
                 tural surface-breaking cracks[J]. Optics & Laser Technol-  2018, 45(9): 269–275.
                 ogy, 2015, 73: 173–178.                        [16] Ni C, Chen C, Ying K, et al.  Non-destructive laser-
              [4] Hernandez-Valle F, Dutton B, Edwards R. Laser ultra-  ultrasonic synthetic aperture focusing technique (SAFT)
                 sonic characterisation of branched surface-breaking de-  for 3D visualization of defects[J]. Photoacoustics, 2021,
                 fects[J]. NDT & E International, 2014, 68: 113–119.  22: 100248.
              [5] Tanaka T, Izawa Y. Nondestructive detection of small  [17] Levesque D, Blouin A, Neron C, et al.  Performance
                 internal defects in carbon steel by laser ultrasonics[J].  of laser-ultrasonic F-SAFT imaging[J]. Ultrasonics, 2002,
                 Japanese Journal of Applied Physics Part 1-Regular  40(10): 1057–1063.
                 Papers Short Notes & Review Papers, 2001, 40(3A):  [18] Blouin A, Levesque D, Neron C, et al. Improved resolu-
                 1477–1481.                                        tion and signal-to-noise ratio in laser-ultrasonics by SAFT
              [6] 孙凯华, 沈中华, 李建文, 等. 铝锂合金内部缺陷的激光超                   processing[J]. Optics Express, 1998, 2(13): 531–539.
                 声无损检测方法 [C]//2018 远东无损检测新技术论坛论文集,              [19] Erikson K, Flaherty J, Lund M. Synthetic aperture ultra-
                 2018: 240–246.                                    sonic imaging systems: US, 3548642[P]. 1970–12–22.
              [7] Pei C, Demachi K, Fukuchi T, et al.  Cracks mea-  [20] Miller G, Pursey H. The field and radiation impedance of
                 surement using fiber-phased array laser ultrasound gen-  mechanical radiators on the free surface of a semi-infinite
                 eration[J]. Journal of Applied Physics, 2013, 113(16):  isotropic solid[J]. Proceedings of the Royal Society of Lon-
                 10.1063/1.4802685.                                don. Series A. Mathematical and Physical Sciences, 1954,
              [8] Yi D, Pei C, Liu T, et al. Inspection of cracks with focused  223(1155): 521–541.
                 angle beam laser ultrasonic wave[J]. Applied Acoustics,  [21] Rose J. Ultrasonic waves in solid media[M]. Cambridge:
                 2019, 145: 1–6.                                   Cambridge University Press, 1999.
   44   45   46   47   48   49   50   51   52   53   54