Page 254 - 《应用声学》2023年第2期
P. 254
442 2023 年 3 月
metal additive manufacturing: a critical review[J]. Mate- [23] Everson S, Dickens P. Identification of sub-surface defects
rial Design, 2018, 139: 565–586. in parts produced by additive manufacturing using laser
[9] Liu B. Ultrasonic and metal magnetic memory testing generated ultrasound[C]. Materials Science and Technol-
method for quality nondestructive evaluation of remanu- ogy Conference, 2019.
facturing coating[J]. Harbin Institute of Technology, 2013. [24] Millon C, Vanhoye A, Obaton A F, et al. Development of
[10] Durkee A D, Lingenfelter A J, Liu D. Ultrasonic test- laser ultrasonics inspection for online monitoring of addi-
ing of manufactured voids in electron beam melted tive manufacturing[J]. Welding in the World, 2018, 62(3):
Ti-6Al-4V[C]. AIAA/ASCE/AHS/ASC Structure, Struc- 653–661.
tural Dynamics and Materials Conference, Kissimmee, [25] Cerniglia D, Scafdi M, Pantano A, et al. Inspection of
Florida, 2018. additive-manufactured layered components[J]. Ultrason-
[11] Song Y F, Zi X H, Fu Y D, et al. Nondestructive test- ics, 2015, 62: 292–298.
ing of additively manufactured material based on ultra- [26] Freitas V L A, de Albuquerque V H C, Silva E D M,
sonic scattering measurement[J]. Measurement, 2018, 118: et al. Nondestructive characterization of microstructures
105–112. and determination of elastic properties in plain carbon
[12] Hanks E, Liu D, Palazotto A. Surface roughness of elec- steel using ultrasonic measurements[J]. Ultrasonics, 2012,
tron beam melting Ti-6Al-4V effect on ultrasonic test-
52: 117–124.
ing[C]. 57th AIAA/ASCE/AHS/ASC Structures Struc-
[27] Witkin D B, Sitzman S, Kim Y, et al. Experimental
tural Dynamics Mater Conference, California, 2016.
nondestructive characterization of an aluminum alloy pre-
[13] 王悦民, 李衍, 陈和坤. 超声相控阵检测技术与应用 [M]. 北
pared by power-bed additive manufacturing[J]. Material
京: 国防工业出版社, 2014.
Evaluation, 2018, 76(4): 489–502.
[14] Lopez A B, Santos J, Sousa J P, et al. Phased array ultra-
[28] Javidrad H, Salemi S. Determination of elastic con-
sonic inspection of metal additive manufacturing parts[J].
stants of additive manufactured Inconel 625 specimens us-
Journal of Nondestructive Evaluation, 2019, 38(3): 1–11.
ing an ultrasonic technique[J]. The International Journal
[15] 李文涛, 周正干. 激光增材制造钛合金构件的阵列超声检测方
of Advanced Manufacturing Technology, 2020, 107(11):
法研究 [J]. 机械工程学报, 2020, 56(8): 141–147.
4597–4607.
Li Wentao, Zhou Zhenggan. Research on ultrasonic array
[29] 董世运, 门平. 激光增材制造合金钢力学性能超声纵波定量无
testing methods of laser additive-manufacturing titanium
损评价 [J]. 精密成形工程, 2019, 11(4): 29–36.
alloy[J]. Journal of Mechanical Engineering, 2020, 56(8):
Dong Shiyun, Men Ping. Nondestructive quantita-
141–147.
tive evaluation on mechanical property of alloy steel by
[16] Wang X H, Li W T, Li Y, et al. Phased array ultrasonic
laser additive manufacturing via ultrasonic longitudinal
testing of micro-flaws in additive manufactured titanium
wave[J]. Journal of Netshape Forming Engineering, 2019,
block[J]. Materials Research Express, 2020, 7(1): 016572.
11(4): 29–36.
[17] Chabot A, Laroche N, Carcreff E, et al. Towards de-
[30] Slotwinski J A, Garboczi E J, Hebenstreit K M. Poros-
fect monitoring for metallic additive manufacturing com-
ity measurements and analysis for metal additive manu-
ponents using phased array ultrasonic testing[J]. Journal
facturing process control[J]. Journal of Research of the
of Intelligent Manufacturing, 2020, 31(8): 1–11.
National Institute of Standards and Technology, 2014,
[18] 刘洋, 项占琴, 唐志峰. 激光超声技术在钢轨探伤中的应用研
119(4): 494–528.
究 [J]. 机械设计与制造, 2009(10): 60–61.
[31] Turner J A, Pratt C S, Sotelo L D, et al. Ultrasonic scat-
Liu Yang, Xiang Zhanqin, Tang Zhifeng. Application of
tering predictions for metal additive manufacturing[J].
laser-induced ultrasonic on rail flaw inspection[J]. Machin-
The Journal of the Acoustical Society of America, 2021,
ery Design and Manufacture, 2009(10): 60–61.
150(4): A307.
[19] Lévesque D, Bescond C, Lord M, et al. Inspection of ad-
ditive manufactured parts using laser ultrasonics[J]. AIP [32] Sol T, Hayun S, Noiman D, et al. Nondestructive ul-
Conference Proceedings, 2016, 1706(1): 130003. trasonic evaluation of additively manufactured AlSi10Mg
[20] Santospirito S P, Lopatka R, Cerniglia D, et al. Defect samples[J]. Additive Manufacturing, 2018, 22: 700–707.
detection in laser powder deposition components by laser [33] Roy M, Walton K, Harley J, et al. Ultrasonic evaluation
thermography and laser ultrasonic inspections[C]. Pro- of segmental variability in additively manufactured metal
ceedings of SPIE, 2013. components[C]. IEEE IUS, Kobe, Japan, 2018.
[21] Davis G, Nagarajah R, Palanisamy S, et al. Laser ultra- [34] Kim C, Yin H, Shmatok A, et al. Ultrasonic nondestruc-
sonic inspection of additive manufactured components[J]. tive evaluation of laser powder bed fusion 316L stainless
The International Journal of Advanced Manufacturing steel[J]. Additive Manufacturing, 2021, 38: 101800.
Technology, 2019, 102(5–8): 2571–2579. [35] Park S, Choi S, Jhang K. Poriosity evaluation of additively
[22] Pieris D, Stratoudaki T, Javadi Y, et al. Laser induced manafactured components using deep learning-based ul-
phased arrays (LIPA) to detect nested features in addi- trasonic nondestructive testing[J]. International Journal
tively manufactured components[J]. Materials and Design, of Precision Engineering and Manufacturing-Green Tech-
2020, 187(C): 108412. nology, 2021.