Page 101 - 《应用声学》2023年第3期
P. 101

第 42 卷 第 3 期              刘骁等: 基于深度学习的材料超声回波衰减预测方法                                          539


              [2] 饶志锋. 未来航空发动机材料面临的挑战与发展趋向 [J]. 科                [9] Goodfellow I, Bengio Y, Courville A. Deep learning[M].
                 研, 2016(4): 32.                                   Massachusetts: MIT Press, 2016.
                 Rao Zhifeng. Challenges and development trends of future  [10] Zhang X, Zhao J, Lecun Y. Character-level convolutional
                 aero-engine materials[J]. Scientific Research, 2016(4): 32.  networks for text classification[C]. Proceedings of the 28th
              [3] Willems H, Goebbels K. Ultrasonic attenuation measure-  International Conference on Neural Information Process-
                 ment using backscattering technique[M]. Berlin: Springer,  ing Systems, 2015.
                 1989.                                          [11] Chollet F. Deep learning with Python[M]. Greenwich:
              [4] Thompson R B, Margetan F J, Haldipur P, et al. Scatter-  Manning Publications, 2021.
                 ing of elastic waves in simple and complex polycrystals[J].  [12] Cho K, Merrienboer B V, Gulcehre C, et al. Learning
                 Wave Motion, 2008, 45(5): 655–674.                phrase representations using RNN encoder-decoder for
              [5] Li J, Rokhlin S I. Characterization of polycrystals by  statistical machine translation[C]//Conference on Empir-
                 ultrasonic attenuation-to-back scattering ratio measure-  ical Methods in Natural Language Processing (EMNLP),
                 ments[J]. The Journal of the Acoustical Society of Amer-  2014.
                 ica, 2012, 132(3): 1961.                       [13] Bengio Y. Deep learning of representations:  looking
              [6] Zhang A, Lipton Z C, Li M, et al. Dive into deep learn-  forward[C]//International Conference on Statistical Lan-
                 ing[J]. arXiv Preprint, arXiv: 2106.11342, 2021.  guage and Speech Processing, 2013.
              [7] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-  [14] Sermanet P. A deep learning pipeline for image under-
                 learn: machine learning in Python[J]. The Journal of Ma-  standing and acoustic modeling[D]. New York: New York
                 chine Learning Research, 2011, 12: 2825–2830.     University, 2014.
              [8] Paszke A, Gross S, Massa F, et al. Pytorch: an impera-  [15] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature,
                 tive style, high-performance deep learning library[C]. Pro-  2015, 521(7553): 436.
                 ceedings of the 33rd International Conference on Neural  [16] Schmidhuber J. Deep learning in neural networks: an
                 Information Processing Systems, 2019.             overview[J]. Neural Networks, 2015, 61: 85–117.
   96   97   98   99   100   101   102   103   104   105   106