Page 127 - 《应用声学》2023年第4期
P. 127

第 42 卷 第 4 期            丁栋等: 水中分层弹性球壳高频时域回波的声学编码研究                                          789


                 nology of underwater locator beacon in deep water[J]. Hy-  acoustic tags using layered media[J]. The Journal of the
                 drographic Surveying and Charting, 2019, 39(1): 79–82.  Acoustical Society of America, 2019, 145(1): 84.
              [2] 许达. 水声测距信标设计与实现 [D]. 哈尔滨: 哈尔滨工程大              [10] Satish A, Trivett D, Sabra K G. Omnidirectional passive
                 学, 2015.                                          acoustic identification tags for underwater navigation[J].
              [3] 张丽. 基于单目视觉的水下目标识别与三维定位技术研                        The Journal of the Acoustical Society of America, 2020,
                 究 [D]. 哈尔滨: 哈尔滨工程大学, 2010.                        147(6): 517.
              [4] Paull L, Saeedi S, Seto M, et al. AUV navigation and  [11] Zhou F, Fan J, Wang B, et al. Acoustic barcode based
                 localization: a review[J]. IEEE Journal of Oceanic Engi-  on the acoustic scattering characteristics of underwater
                 neering, 2014, 39(1): 131–149.                    targets[J]. Applied Acoustics, 2022, 189: 108607.
              [5] 张娟. 基于领航者的多水下航行器协同导航定位研究 [D]. 哈               [12] Fawcett J A. Modeling of high-frequency scattering from
                 尔滨: 哈尔滨工程大学, 2017.                                objects using a hybrid Kirchhoff/diffraction approach[J].
              [6] Harrison C, Xiao R, Hudson S. Acoustic barcodes:  The Journal of the Acoustical Society of America, 2001,
                 passive, durable and inexpensive notched identification  109(4): 1312–1319.
                 tags[C]. Association for Computing Machinery, 2012:  [13] Mei J, Hou B, Ke M Z, et al. Acoustic wave transmission
                 563–567.                                          through a bull’s eye structure[J]. Applied Physics Letters,
              [7] Srivastava P, Nichols B, Sabra K G. Passive underwater  2008, 92(12): 124106.
                 acoustic markers using Bragg backscattering[J]. The Jour-  [14] 汤渭霖, 范军. 水中双层弹性球壳的回声特性 [J]. 声学学报,
                 nal of the Acoustical Society of America, 2017, 142(6):  1999, 24(2): 174–182.
                 573.                                              Tang Weilin, Fan Jun. Echoes from double elastic spheri-
              [8] Satish A, Nichols B, Trivett D, et al. Passive underwa-  cal shell in water[J]. Acta Acustica, 1999, 24(2): 174–182.
                 ter acoustic markers for navigation and information en-  [15] 范军, 汤渭霖. 覆盖粘弹性层的水中双层弹性球壳的回声特
                 coding for high frequency sound navigation and ranging  性 [J]. 声学学报, 2001, 26(4): 302–306.
                 (SONAR) devices[J]. The Journal of the Acoustical Soci-  Fan Jun, Tang Weilin. Echoes from double elastic spher-
                 ety of America, 2017, 142(4): 2731–2731.          ical shell covered with viscoelastic materials in water [J].
              [9] Satish A, Nichols B, Trivett D, et al. Passive underwater  Acta Acustica, 2001, 26(4): 302–306.





             附录A

                 待定系数矩阵 X 为 18 × 18 的矩阵,其中系数                      d 31 = − xh ′(1) (x 1 ),
                                                                             n
             矩阵中不为0的待定系数如下:                                                  ′
                                                                  d 32 = x L12 j (x L12 ),
                                                                             n
                      ρ 0  2  (1)
                d 11 =  x T 12 n  (x 1 ),                         d 33 = x L12 y (x L12 ),
                            h
                                                                             ′
                                                                             n
                      ρ e
                                     ]j
                d 12 = [2n(1 + n) − x 2 T 12 n (x L12 )           d 34 = n(n + 1)j n (x T 12 ),
                              ′
                      − 4x L12 j (x L12 ),                        d 35 = n(n + 1)y n (x T 12 ),
                              n
                d 13 = [2n(1 + n) − x 2  ]y n (x L12 )            d 36 = d 37 = · · · 0,
                                  T 12
                                                                                     T 22 n (x L22 )
                      − 4x L12 y (x L12 ),                        d 42 = [2n(1 + n) − x 2  ]j
                              ′
                              n
                                                                               ′
                                   ′
                d 14 = 2n(n + 1)[x T 12 j (x T 12 ) − j n (x T 12 )],   − 4x L2 j (x L22 ),
                                                                               n
                                   n
                                     ′
                d 15 = 2n(n + 1)[x T 12 2y (x T 12 ) − y n (x T 12 )],  d 43 = [2n(1 + n) − x 2  ]y n (x L22 )
                                                                                     T 22
                                     n
                                                                                 ′
                                      ′
                d 22 = 2[j n (x L12 ) − x L12 j (x L12 )],              − 4x L22 y (x L22 ),
                                                                                 n
                                      n
                                                                                      ′
                d 23 = 2[y n (x L12 ) − x L12 y (x L12 )],        d 44 = 2n(n + 1)[x T 22 j (x T 22 ) − j n (x T 22 )],
                                       ′
                                                                                      n
                                       n
                                                                                      ′
                           ′
                d 24 = 2x T 12 j (x T 12 )                        d 45 = 2n(n + 1)[x T 22 y (x T 22 ) − y n (x T 22 )],
                                                                                      n
                           n
                                                                                        T 23 n (x L23 )
                      + [x 2 T 12  − 2n(n + 1) + 2]j n (x T 12 ),  d 46 = − {[2n(1 + n) − x 2  ]j
                                                                                ′
                d 25 = 2x T 12 y (x T 12 )                              − 4x L23 j (x L23 )},
                            ′
                            n                                                   n
                      + [x 2 T 12  − 2n(n + 1) + 2]y n (x T 12 ),  d 47 = − {[2n(1 + n) − x 2  ]y n (x L23 )
                                                                                        T 23
                                                                                 ′
                d 26 = · · · d 218 = 0,                                 − 4x L23 y (x L23 )},
                                                                                 n
   122   123   124   125   126   127   128   129   130   131   132