Page 222 - 《应用声学)》2023年第5期
P. 222

1114                                                                                 2023 年 9 月


             之处,且对同种喇叭发出的鸣笛声识别分类仍需做                                Ban Qi, Wei Xiaoqing, Yu Yang. Design of automobile
             大量实验进行验证,后续可进一步采集更多车型的                                horn sound recognition system based on BP neural al-
                                                                   gorithm[J]. Automation and Instrumentation, 2016, 11:
             鸣笛声以及同种品牌车型的鸣笛声构建鸣笛声样
                                                                   233–235.
             本库,并在更复杂的环境中验证其准确性与稳定性,                             [5] 白琳, 黄梓瑜, 叶程, 等. 基于 BP 神经网络的车辆声音信号识
             为提升识别正确率做进一步研究分析。                                     别 [J]. 自动化技术与应用, 2014, 33(2): 64–66, 86.
                                                                   Bai Lin, Huang Ziyu, Ye Cheng, et al. Recognition of
                                                                   vehicle acoustic signals based on BP neural network[J].
                                                                   Techniques of Automation & Applications, 2014, 33(2):
                            参 考     文   献
                                                                   64–66, 86.
                                                                 [6] Averbuch A, Zheludev V A, Rabin N, et al. Wavelet-based
              [1] 刘建平, 张一闻, 刘颖. 基于麦克风阵列的汽车笛语识别                     acoustic detection of moving vehicles[J]. Multidimensional
                 及笛声定位方法 [J]. 西安电子科技大学学报, 2012, 39(1):             Systems and Signal Processing, 2009, 20(1): 55–80.
                 163–167.                                        [7] 郑皓. 基于深度学习的汽车违法鸣笛识别方法研究 [D]. 兰州:
                 Liu Jianping, Zhang Yiwen, Liu Ying. A recognition and  兰州交通大学, 2018.
                 localization of car whistles using the microphone array[J].  [8] Miao F, Yang D, Wen J, et al. Moving sound source lo-
                 Journal of Xidian University, 2012, 39(1): 163–167.  calization based on triangulation method[J]. Journal of
              [2] 孙懋珩, 俞莹婷. 汽车鸣笛声定位系统仿真 [J]. 声学技术,                 Sound and Vibration, 2016, 385: 93–103.
                 2009, 28(5): 640–644.                           [9] Kim Y S, Shin T, Lee S K, et al. Acoustics character-
                 Sun Maoheng, Yu Yingting.  Simulation of car horn  istic of car horn sound[J]. INTER-NOISE and NOISE-
                 localization system[J]. Technical Acoustics, 2009, 28(5):  CON Congress and Conference Proceedings, 2017, 255(7):
                 640–644.                                          180–191.
              [3] 侍艳华, 刘菁原, 卞飞, 等. 基于 MFCC 和 CNN 的汽车鸣笛          [10] Kotus J, Lopatka K, Czyzewski A. Detection and localiza-
                 声识别算法 [J]. 电声技术, 2020, 44(5): 30–33.              tion of selected acoustic events in acoustic field for smart
                 Shi Yanhua, Liu Jingyuan, Bian Fei, et al. An recogni-  surveillance applications[J]. Multimedia Tools and Appli-
                 tion algorithm for automobile whistle based on MFCC and  cations, 2014, 68(1): 5–21.
                 CNN[J]. Audio Engineering, 2020, 44(5): 30–33.  [11] Yi W, Lawlor B. Speaker recognition based on MFCC and
              [4] 班琦, 魏小庆, 于洋. 基于 BP 神经算法的汽车喇叭声音识别                 BP neural networks[C]. 2017 28 th  Irish Signals and Sys-
                 系统设计 [J]. 自动化与仪器仪表, 2016, 11: 233–235.            tems Conference(ISSC), 2017: 20–21.
   217   218   219   220   221   222   223   224