Page 222 - 《应用声学)》2023年第5期
P. 222
1114 2023 年 9 月
之处,且对同种喇叭发出的鸣笛声识别分类仍需做 Ban Qi, Wei Xiaoqing, Yu Yang. Design of automobile
大量实验进行验证,后续可进一步采集更多车型的 horn sound recognition system based on BP neural al-
gorithm[J]. Automation and Instrumentation, 2016, 11:
鸣笛声以及同种品牌车型的鸣笛声构建鸣笛声样
233–235.
本库,并在更复杂的环境中验证其准确性与稳定性, [5] 白琳, 黄梓瑜, 叶程, 等. 基于 BP 神经网络的车辆声音信号识
为提升识别正确率做进一步研究分析。 别 [J]. 自动化技术与应用, 2014, 33(2): 64–66, 86.
Bai Lin, Huang Ziyu, Ye Cheng, et al. Recognition of
vehicle acoustic signals based on BP neural network[J].
Techniques of Automation & Applications, 2014, 33(2):
参 考 文 献
64–66, 86.
[6] Averbuch A, Zheludev V A, Rabin N, et al. Wavelet-based
[1] 刘建平, 张一闻, 刘颖. 基于麦克风阵列的汽车笛语识别 acoustic detection of moving vehicles[J]. Multidimensional
及笛声定位方法 [J]. 西安电子科技大学学报, 2012, 39(1): Systems and Signal Processing, 2009, 20(1): 55–80.
163–167. [7] 郑皓. 基于深度学习的汽车违法鸣笛识别方法研究 [D]. 兰州:
Liu Jianping, Zhang Yiwen, Liu Ying. A recognition and 兰州交通大学, 2018.
localization of car whistles using the microphone array[J]. [8] Miao F, Yang D, Wen J, et al. Moving sound source lo-
Journal of Xidian University, 2012, 39(1): 163–167. calization based on triangulation method[J]. Journal of
[2] 孙懋珩, 俞莹婷. 汽车鸣笛声定位系统仿真 [J]. 声学技术, Sound and Vibration, 2016, 385: 93–103.
2009, 28(5): 640–644. [9] Kim Y S, Shin T, Lee S K, et al. Acoustics character-
Sun Maoheng, Yu Yingting. Simulation of car horn istic of car horn sound[J]. INTER-NOISE and NOISE-
localization system[J]. Technical Acoustics, 2009, 28(5): CON Congress and Conference Proceedings, 2017, 255(7):
640–644. 180–191.
[3] 侍艳华, 刘菁原, 卞飞, 等. 基于 MFCC 和 CNN 的汽车鸣笛 [10] Kotus J, Lopatka K, Czyzewski A. Detection and localiza-
声识别算法 [J]. 电声技术, 2020, 44(5): 30–33. tion of selected acoustic events in acoustic field for smart
Shi Yanhua, Liu Jingyuan, Bian Fei, et al. An recogni- surveillance applications[J]. Multimedia Tools and Appli-
tion algorithm for automobile whistle based on MFCC and cations, 2014, 68(1): 5–21.
CNN[J]. Audio Engineering, 2020, 44(5): 30–33. [11] Yi W, Lawlor B. Speaker recognition based on MFCC and
[4] 班琦, 魏小庆, 于洋. 基于 BP 神经算法的汽车喇叭声音识别 BP neural networks[C]. 2017 28 th Irish Signals and Sys-
系统设计 [J]. 自动化与仪器仪表, 2016, 11: 233–235. tems Conference(ISSC), 2017: 20–21.