Page 123 - 201805
P. 123

第 37 卷 第 5 期               廉国选等: 液电冲击波在液固介质中的传播观测                                           705


                 Ren Peng, Zhang Wei, Liu Jianhua, et al. Characteristics  焦实验研究 [J]. 国防科技大学学报, 2012, 34(4): 54–57.
                 of high strength underwater explosion equivalent shock  Zhang Zhenfu, Zeng Xinwu, Wang Yibo, et al.  Ex-
                 loading[J]. Acta Armamentarii, 2015, 36(4): 716–722.  perimental study of the focusing property of underwater
              [2] 贾则, 刘建兵, 权琳, 等. 球形炸药水下爆炸的舰船空化效应                  pulsed discharge shock wave[J]. Journal of National Uni-
                 研究 [J]. 舰船科学技术, 2018, 40(5): 14–18.               versity of Defense Technology, 2012, 34(4): 54–57.
                 Jia Ze, Liu Jianbing, Quan Lin, et al. Research on cavi-  [14] 胡杨, 陈永涛, 金山. 用于冲击波速度测量的自检式光纤传感
                 tation effect of warship underwater explosion by spherical  系统 [J]. 红外与激光工程, 2012, 41(9): 2444–2448.
                 explosive[J]. Ship Science and Technology, 2018, 40(5):  Hu Yang, Chen Yongtao, Jin Shan. Self-check fiber-optic
                 14–18.                                            sensor system in shock-wave velocity detection[J]. Infrared
              [3] 张艺凡, 宗智, 张文鹏. 水下冲击波作用下结构损伤的数值预                   and Laser Engineering, 2012, 41(9): 2444–2448.
                 报误差分析 [J]. 中国舰船研究, 2011, 6(6): 38–44.          [15] 刘小龙, 黄建国, 雷开卓. 水下等离子体声源的冲击波负压特
                 Zhang Yifan, Zong Zhi, Zhang Wenpeng. Error analysis  性 [J]. 物理学报, 2013, 62(20): 1–7.
                 of numerical prediction of structure damages subjected to  Liu Xiaolong, Huang Jianguo, Lei Kaizhuo. Shock wave
                 underwater shock[J]. Chinese Journal of Ship Research,  negative pressure characteristics of underwater plasma
                 2011, 6(6): 38–44.                                sound source[J]. Acta Physica Sinica, 2013, 62(20): 1–7.
              [4] 张振华, 朱锡, 白雪飞. 水下爆炸冲击波的数值模拟研究 [J].             [16] 李斌, 王雨, 周志强, 等. 爆炸冲击波威力高速纹影测量方
                 爆炸与冲击, 2004, 24(2): 182–188.                      法 [J]. 光学与光电技术, 2018, 16(2): 43–49.
                 Zhang Zhenhua, Zhu Xi, Bai Xuefei. The study on nu-
                                                                   Li Bin, Wang Yu, Zhou Zhiqiang, et al.  High-speed
                 merical simulation of underwater blast wave[J]. Explosion
                                                                   schlieren photography for measuring the explosive blast
                 and Shock Waves, 2004, 24(2): 182–188.            wave power[J]. Optics & Optoelectronic Technology, 2018,
              [5] 杨志焕, 朱佩芳, 蒋建新, 等. 水下冲击波的生物效应 [J]. 爆              16(2): 43–49.
                 炸与冲击, 2003, 23(2): 134–139.
                                                                [17] Martí-López L, Ocaña R, Piñeiro E, et al. Laser peening
                 Yang Zhihuan, Zhu Peifang, Jiang Jianxin, et al. Bio-
                                                                   induced shock waves and cavitation bubbles in water stud-
                 effects of underwater blast waves[J]. Explosion and Shock
                                                                   ied by optical schlieren visualization[J]. Physics Procedia,
                 Waves, 2003, 23(2): 134–139.
                                                                   2011, 12: 442–451.
              [6] Chaussy C, Schmiedt E, Jocham D, et al. First clinical
                                                                [18] Vaisakh S, Muruganandam T M. Schlieren measurement
                 experience with extracorporeally induced destruction of
                                                                   of ‘normal-spanwise length’ of a bifurcated normal shock
                 kidney stones by shock waves[J]. The Journal of Urology,
                                                                   wave in a rectangular duct[J]. Experimental Thermal and
                 1982, 127(3): 417–420.
                                                                   Fluid Science, 2018, 96: 43–47.
              [7] 何申戌, 孟广栋, 张禄逊, 等. 液电冲击波膀胱碎石的原理及
                                                                [19] 吴春平, 钟冬望. 动光弹原理及其在爆破理论研究中的应
                 其临床应用中的几个问题 [J]. 北京医学院学报, 1983, 15(4):
                                                                   用 [J]. 武汉科技大学学报: 自然科学版, 2006, 29(1): 55–58.
                 279–282.
                                                                   Wu Chunping, Zhong Dongwang. Dynamic photoelastic
              [8] Smith N, Zhong P. Stone comminution correlates with the
                                                                   method and its application to blasting research[J]. Journal
                 average peak pressure incident on a stone during shock
                                                                   Of Wuhan University of Science and Technology: Natural
                 wave lithotripsy[J]. Journal of Biomechanics, 2012, 45(15):
                                                                   Science Edition, 2006, 29(1): 55–58.
                 2520–2525.
                                                                [20] 张宏梅, 陆渝生, 储伟俊, 等. 冲击荷载作用下球壳形遮弹板应
              [9] Donaldson J F, Lardas M, Scrimgeour D, et al. System-
                                                                   力场的动光弹试验研究 [J]. 兵工学报, 2006, 27(2): 335–338.
                 atic review and meta-analysis of the clinical effectiveness
                                                                   Zhang Hongmei, Lu Yusheng, Chu Weijun, et al. Study
                 of shock wave lithotripsy retrograde intrarenal surgery,
                                                                   on stress field of spherical anti-penetration plate acted by
                 and percutaneous nephrolithotomy for lower-pole renal
                 stones[J]. European Urology, 2015, 67(4): 612–616.  impulsive load using dynamic photo elasticity[J]. Acta Ar-
             [10] 应崇福, 安宇. 声空化气泡内部的高温和高压分布 [J]. 中国科                mamentarii, 2006, 27(2): 335–338.
                 学 (A 辑), 2002, 32(4): 305–313.                 [21] 朱振海. 爆炸波与地下结构物相互作用的动光弹性探讨 [J].
             [11] 应崇福. 新世纪内声空化声致发光的研究进展 ——兼论声                      爆炸与冲击, 1989, 9(3): 276–280.
                 致热核聚变和声 (致) 化学 [J]. 中国科学 (G 辑), 2007, 37(2):      Zhu Zhenhai. Studies on the interaction of blasting stress
                 129–136.                                          waves with a underground structure by dynamic pho-
             [12] 宁心, 李晓炎, 杨志焕, 等. 水下冲击波和空气冲击波传播速                  toelasticity[J]. Explosion and Shock Waves, 1989, 9(3):
                 度及物理参数的对比研究 [J]. 解放军医学杂志, 2004, 29(2):            276–280.
                 97–99.                                         [22] 武伟. 用动光弹法研究瞬态表面载荷的破坏作用 [J]. 北京科
                 Ning Xin, LI Xiaoyan, Yang Zhihuan, et al. A compara-  技大学学报, 1991, 13(3): 202–206.
                 tive study on the propagation speed and physical parame-  Wu Wei. Dynamic photoelastic analysis of breakage ac-
                 ters of underwater blast wave and air blast wave[J]. Med-  tion of transient contact loads[J]. Journal of University of
                 ical Journal of Chinese People’s Liberation Army, 2004,  Science and Technology Beijing, 1991, 13(3): 202–206.
                 29(2): 97–99.                                  [23] 应崇福. 超声在固体中的散射 [M]. 北京: 国防工业出版社,
             [13] 张振福, 曾新吾, 王一博, 等. 基于水下脉冲放电的冲击波聚                  1994.
   118   119   120   121   122   123   124   125   126   127   128