Page 12 - 201901
P. 12

第 38 卷 第 1 期                                                                       Vol. 38, No. 1
             2019 年 1 月                          Journal of Applied Acoustics                   January, 2019


             ⋄ 研究报告 ⋄



               复合深度神经网络在直升机声目标识别中的研究





                                      郭 洋     1,2  周 翊     2  管鲁阳      1†   鲍 明    1


                                     (1 中国科学院噪声与振动重点实验室 (声学研究所)            北京  100190)
                                                 (2 重庆邮电大学     重庆   400065)

                摘要    针对直升机探测中目标运动过程连续识别的鲁棒性问题,提出了一种基于复合深度神经网络的直升机
                声学特征提取和识别框架。复合深度神经网络由卷积神经网络和长短时记忆神经网络以并行结构组合,进行
                直升机声学特征的优化,完成直升机类型识别。针对直升机声信号特性,对卷积神经网络进行了改进,使得该
                复合深度神经网络在信号短时谱基础上优化声信号特征表征并提取前后帧之间的相关信息,弥补通常声目标
                识别方法不能充分利用目标信号时间历程信息的缺陷。真实外场实验数据测试结果显示:相较于传统识别方
                法,该算法显著提升了直升机进入有效探测范围后连续识别的鲁棒性和目标识别正确率。
                关键词     深度神经网络,声目标识别,直升机识别
                中图法分类号: TB535+.3           文献标识码: A          文章编号: 1000-310X(2019)01-0008-08
                DOI: 10.11684/j.issn.1000-310X.2019.01.002




                      Research on combined deep neural network in acoustic helicopter
                                                  target recognition



                                 GUO Yang  1,2  ZHOU Yi  2  GUAN Luyang   1   BAO Ming  1


                     (1 Key Laboratory of Noise and Vibration Research, Chinese Academy of Sciences, Beijing 100190, China)
                             (2 Chongqing University of Posts and Telecommunications, Chongqing 400065, China)
                 Abstract  To improve the performance of continuous recognition of acoustic targets, a novel combined deep
                 neural network was proposed to extract features and recognize helicopters. In the framework of the combined
                 deep neural network, a modified convolutional neural network and a long short-term memory neural network
                 were combined primarily in a parallel manner to optimize the representation of helicopter’s acoustic charac-
                 teristics and implement helicopter type recognition. The optimized feature pattern extracted by the combined
                 deep neural network included the current spectral characteristics and time series information hidden in the
                 input short-term spectrum. It was designed to overcome the lack of time information of the target signal in the
                 conventional acoustic target recognition methods. The proposed method was tested using the real helicopter
                 acoustic signals from the field experiments. The results indicate that the proposed combined deep neural
                 network significantly improves the recognition accuracy and the robustness of the continuous acoustic target
                 recognition when the target is within the detection range.
                 Key words Deep neural network, Acoustic target recognition, Helicopter recognition
             2018-05-03 收稿; 2018-09-04 定稿
             作者简介: 郭洋 (1994- ), 男, 四川达州人, 硕士研究生, 研究方向: 信号与信息处理。
             † 通讯作者 E-mail: guanluyang@mail.ioa.ac.cn
   7   8   9   10   11   12   13   14   15   16   17