Page 182 - 201903
P. 182

464                                                                                  2019 年 5 月


             [14] 陈彦华, 李明轩. 利用人工神经网络实现缺陷的类型识别 [J].              [26] Nasr-Esfahani E, Samavi S, Karimi N, et al. Vessel extrac-
                 应用声学, 1998, 17(2): 1–4, 10.                       tion in X-ray angiograms using deep learning[C]. The 38th
                 Chen Yanhua, Li Mingxuan.  Classification of flaws  International Conference of the Engineering in Medicine
                 through an artificial neural network[J]. Applied Acoustics,  and Biology Society (EMBC). Orlando, FL, USA: IEEE,
                 1998, 17(2): 1–4, 10.                             2016: 643–646.
             [15] 刘镇清, 李成林, 刘江韦, 等. 超声探伤信号的人工神经网络               [27] Second annual data science bowl[EB/OL]. [2018–09–27].
                 识别 [J]. 应用声学, 1997, 16(2): 14–17.                 https://www.kaggle.com/c/second-annual-data-science-
                 Liu Zhenqing, Li Chenglin, Liu Jiangwei, et al.  Flaw  bowl.
                 signature recognition in ultrasonic testing using artificial  [28] Shen D G, Wu G R, Suk H I. Deep learning in medical
                 neural network[J]. Applied Acoustics, 1997, 16(2): 14–17.  image analysis[J]. Annual Review of Biomedical Engineer-
             [16] Simone G, Morabito F C, Polikar R, et al. Feature extrac-  ing, 2017, 19: 221–248.
                 tion techniques for ultrasonic signal classification[J]. In-  [29] 余永维, 殷国富, 殷鹰, 等. 基于深度学习网络的射线图像缺
                 ternational Journal of Applied Electromagnetics and Me-  陷识别方法 [J]. 仪器仪表学报, 2014, 35(9): 2012–2019.
                 chanics, 2001, 15(1–4): 291–294.                  Yu Yongwei, Yin Guofu, Yin Ying, et al. Defect recog-
             [17] 卢超, 张维, 彭应秋, 等. 小波分析和人工神经网络在金属超                  nition for radiographic image based on deep learning net-
                 声无损检测缺陷分类中的应用 [J]. 南昌航空工业学院学报,                    work[J]. Chinese Journal of Scientific Instrument, 2014,
                 2001, 15(3): 51–54.                               35(9): 2012–2019.
                 Lu Chao, Zhang Wei, Peng Yingqiu, et al.  Applica-  [30] 颜伟鑫. 深度学习及其在工件缺陷自动检测中的应用研
                 tion of wavelet analysis and artificial neutral networks to  究 [D]. 广州: 华南理工大学, 2016.
                 flaw classification in ultrasonic non-destructive testing[J].  [31] 郑志远. 焊缝典型缺陷的超声 TOFD-D 扫成像技术研究 [D].
                 Joural of Nanchang Institute of Aeronautical Technology,  南昌: 南昌航空大学, 2017.
                 2001, 15(1–4): 291–294.                        [32] Khumaidi A, Yuniarno E M, Purnomo M H. Welding de-
             [18] Veiga J, de Carvalho A A, da Silva I C, et al. The use of  fect classification based on convolution neural network
                 artificial neural network in the classification of pulse-echo  (CNN) and Gaussian kernel[C]//Intelligent Technology
                 and TOFD ultra-sonic signals[J]. Journal of the Brazil-  and Its Applications (ISITIA), 2017 International Sem-
                 ian Society of Mechanical Sciences and Engineering, 2005,  inar on. IEEE, 2017: 261–265.
                 27(4): 394–398.                                [33] Carneiro G, Nascimento J, Bradley A P. Unregis-
             [19] Sambath S, Nagaraj P, Selvakumar N. Automatic de-  tered multiview mammogram analysis with pre-trained
                 fect classification in ultrasonic NDT using artificial in-  deep learning models[M]//Medical Image Computing and
                 telligence[J]. Journal of Nondestructive Evaluation, 2011,  Computer-Assisted Intervention.  Munich, Germany:
                 30(1): 20–28.                                     Springer, 2015: 652–660.
             [20] Wang B, Saniie J. Ultrasonic target echo detection us-  [34] Tajbakhsh N, Shin J Y, Gurudu S R, et al. Convolutional
                 ing neural network[C]//Proceedings of 2017 IEEE Inter-  neural networks for medical image analysis: full training
                 national Conference on Electro Information Technology  or fine tuning?[J]. IEEE Transactions on Medical Imaging,
                 (EIT), 2017.                                      2016, 35(5):1299–1312.
             [21] Wang B, Saniie J. Ultrasonic flaw detection based on  [35] Hinton G E, Srivastava N, Krizhevsky A, et al. Improv-
                 temporal and spectral signals applied to neural net-  ing neural networks by preventing co-adaptation of feature
                 work[C]//Ultrasonics Symposium (IUS), 2017 IEEE In-  detectors[J]. Computer Science, 2012, arXiv: 1207.0580.
                 ternational. IEEE, 2017: 1–4.                  [36] Song Y Y, Zhang L, Chen S P, et al. Accurate segmenta-
             [22] 施成龙, 师芳芳, 张碧星. 利用深度神经网络和小波包变换进                   tion of cervical cytoplasm and nuclei based on multiscale
                 行缺陷类型分析 [J]. 声学学报, 2016, 41(4): 499–506.          convolutional network and graph partitioning[J]. IEEE
                 Shi Chenglong, Shi Fangfang, Zhang Bixing. Analysis on  Transactions on Biomedical Engineering, 2015, 62(10):
                 defect classification by deep neural networks and wavelet  2421–2433.
                 packet transform[J]. Acta Acustica, 2016, 41(4): 499–506.  [37] Kim Y. Convolutional neural networks for sentence clas-
             [23] Arevalo J, Gonzalez F A, Ramos-Pollan R, et al. Rep-  sification[J]. Computer Science, 2014, arXiv: 1408.5882.
                 resentation learning for mammography mass lesion clas-  [38] Zikic D, Ioannou Y, Brown M, et al.  Segmentation
                 sification with convolutional neural networks[J]. Com-  of brain tumor tissues with convolutional neural net-
                 puter Methods and Programs in Biomedicine, 2016, 127:  works[C]. The 2014 MICCAI Workshop on Multimodal
                 248–257.                                          Brain Tumor Segmentation Challenge.  Boston, Mas-
             [24] Xu Y, Mo T, Feng Q W, et al. Deep learning of feature  sachusetts, USA, 2014: 36–39.
                 representation with multiple instance learning for medical  [39] Ji S, Xu W, Yang M, et al.  3D convolutional neural
                 image analysis[C]. The 2014 IEEE International Confer-  networks for human action recognition[J]. IEEE Transac-
                 ence on Acoustics, Speech and Signal Processing. Flo-  tions on Pattern Analysis and Machine Intelligence, 2013,
                 rence, Italy: IEEE, 2014: 1626–1630.              35(1): 221–231.
             [25] Dou Q, Chen H, Yu L Q, et al. Multilevel contextual 3-D  [40] Lai S, Xu L, Liu K, et al. Recurrent convolutional neural
                 CNNs for false positive reduction in pulmonary nodule de-  networks for text classification[C]. The Association for the
                 tection[J]. IEEE Transactions on Biomedical Engineering,  Advancement of Artificial Intelligence (AAAI), 2015, 333:
                 2017, 64(7): 1558–1567.                           2267–2273.
   177   178   179   180   181   182   183   184