Page 48 - 《应用声学》2020年第2期
P. 48

206                                                                                  2020 年 3 月


                 chines and deep neural networks[C]. Proceedings of the  quences using a deep neural network[C]. Proceedings of
                 IEEE International Conference on Machine Learning and  the IEEE International Conference on Computer Vision
                 Applications, IEEE, 2017: 280–285.                Workshop, IEEE, 2018: 1460–1469.
              [8] Piczak K. Recognizing bird species in audio recordings us-  [17] 张建华, 孔繁涛, 吴建寨, 等. 基于改进 VGG 卷积神经网络
                 ing deep convolutional neural networks[C]. CEUR Work-  的棉花病害识别模型 [J]. 中国农业大学学报, 2018, 23(11):
                 shop Proceedings, 2012, 43(9): 87–90.             161–171.
              [9] Martinsson J. Bird species identification using convolu-  Zhang Jianhua, Kong Fantao, Wu Jianzhai, et al. Cotton
                 tional neural networks[D]. Gothenburg: Chalmers Uni-  disease identification model based on improved VGG con-
                 versity of Technology, 2017.                      volution neural network[J]. Journal of China Agricultural
             [10] 谢将剑, 李文彬, 张军国, 等. 基于 Chirplet 语图特征和深             University, 2018, 23(11): 161–171.
                 度学习的鸟类物种识别方法 [J]. 北京林业大学学报, 2018,
                                                                [18] 刘文定, 李安琪, 张军国, 等. 基于 ROI-CNN 的赛罕乌拉国
                 40(3): 122–127.
                                                                   家级自然保护区陆生野生动物自动识别 [J]. 北京林业大学学
                 Xie Jiangjian, Li Wenbin, Zhang Junguo, et al.  Bird
                                                                   报, 2018, 40(8): 123–131.
                 species recognition method based on Chirplet spectrogram
                                                                   Liu Wending, Li Anqi, Zhang Junguo, et al. Automatic
                 feature and deep learning[J]. Journal of Beijing Forestry
                                                                   identification method for terrestrial wildlife in Saihanwula
                 University, 2018, 40(3): 122–127.
                                                                   National Nature Reserve in Inner Mongolia of northern
             [11] 随婷婷, 王晓峰. 一种基于 CLMF 的深度卷积神经网络模
                                                                   China based on ROI-CNN[J]. Journal of Beijing Forestry
                 型 [J]. 自动化学报, 2016, 42(6): 875–882.
                                                                   University, 2018, 40(8): 123–131.
                 Sui Tingting, Wang Xiaofeng. Convolutional neural net-
                                                                [19] Yang T, Long X, Sangaiah A K, et al. Deep detection
                 works with candidate location and multi-feature fusion[J].
                                                                   network for real-life traffic sign in vehicular networks[J].
                 Acta Automatica Sinica, 2016, 42(6): 875–882.
                                                                   Computer Networks, 2018, 136(8): 95–104.
             [12] Goeau H, Glotin H, Vellinga W P, et al. LifeCLEF bird
                                                                [20] 付晓峰, 吴俊, 牛力. 小数据样本深度迁移网络自发表情分
                 identification task 2014[R]. CLEF2014: 585–597.
             [13] Wang J C, Wang J F, Weng Y S. Chip design of MFCC  类 [J]. 中国图象图形学报, 2019, 24(5): 753–761.
                 extraction for speech recognition[J]. Integration-The VLSI  Fu Xiaofeng, Wu Jun, Niu Li.  Classification of small
                 Journal, 2002, 32(1/2): 111–131.                  spontaneous expression database based on deep transfer
             [14] Glotin H, Ricard J, Balestriero R. Fast chirplet transform  learning network[J]. Journal of Image and Graphics, 2019,
                 to enhance CNN machine listening-validation on animal  24(5): 753–761.
                 calls and speech[J]. arXiv: 1611.08749, 2017.  [21] 胡满满, 陈旭, 孙毓忠, 等. 基于动态采样和迁移学习的疾病预
             [15] Potamitis I, Ntalampiras S, Jahn O, et al. Automatic bird  测模型 [J]. 计算机学报, 2019, 42(10): 2339–2354.
                 sound detection in long real-field recordings: applications  Hu Manman, Chen Xu, Sun Yuzhong, et al. A disease
                 and tools[J]. Applied Acoustics, 2014, 80(4): 1–9.  prediction model based on dynamic sampling and transfer
             [16] Marban A, Srinivasan V, Samek W, et al. Estimating  learning[J]. Chinese Journal of Computers, 2019, 42(10):
                 position & velocity in 3D space from monocular video se-  2339–2354.
   43   44   45   46   47   48   49   50   51   52   53