Page 169 - 《应用声学》2020年第3期
P. 169
第 39 卷 第 3 期 曾赛等: 水下对转螺旋桨流致辐射噪声机理与预报方法 489
1988, 84(2): 719–731. [81] Goldstein M E. High frequency sound emission from mov-
[64] Ebeling K J, Zum V K. Cavitation sblasen in wesser[J]. ing point multipole sources embedded in arbitrary trans-
Acoustic, 1978: 511–517. versely sheared mean flows[J]. Journal of Sound and Vi-
[65] Hickling R, Plesset M S. Collapse and rebound of a spheri- bration, 1982, 80(4): 499–522.
cal bubble in water[J]. Physics of Fluids, 1964, 7(1): 7–14. [82] 李环, 刘聪尉, 吴方良, 等. 水动力噪声计算方法综述 [J]. 中
[66] Tomita Y, Shims A. Mechanisms of impulsive pressure 国舰船研究, 2016, 11(2): 72–89.
generation and damage pit formation by bubble col- Li Huan, Liu Congwei, Wu Fangliang, et al. A review of
lapse[J]. Journal of Fluid Mechanics, 1986, 169: 535–564. the progress for computational methods of hydrodynamic
[67] Sanada N, Takayama K, Onodera O, et al. Interaction noise[J]. Chinese Journal of Ship Research, 2016, 11(2):
of an air bubble with a shock wave generated by a micro- 72–89.
explosion in water[C]//Proceeding of the Interaction Sym- [83] Tam C K W, Webb J C. Dispersion relation preserving
posium on Cavitation. Japan, 1986: 67–72. finite difference schemes for computational acoustics [J].
[68] Goldstein M E. A generalized acoustic analogy[J]. Journal Journal of Computational Physics, 1993, 107(2): 262–281.
of Fluid Mechanics, 2003, 488: 315–333. [84] Walderhaug H. Paint roughness effects on skin friction[J].
[69] Ffowcs-Williams J E, Hawkings D L. Sound generation International Shipbuilding Progress, 1986, 33(382):
by turbulence and surfaces in arbitrary motion[J]. Philo- 96–100.
sophical Transactions of the Royal Society A: Mathemat- [85] Colonius T, Lele S K. Computational aeroacoustics:
ical, Physical and Engineering Sciences, 1969, 264(1151): progress on nonlinear problems of sound generation[J].
321–342. Progress in Aerospace Sciences, 2004, 40(6): 345–416.
[70] Powell A. Theory of vortex sound[J]. Journal of the Acous- [86] Mitchell B E, Lele S K, Moin P. Direct computation of
tical Society of America, 1964, 32(8): 982–990. the sound from a compressible co-rotating vortex pair[J].
[71] Lighthill M J. On sound generated aerodynamically. II. Journal of Fluid Mechanics, 1995, 285: 181–202.
Turbulence as a source of sound[J]. Proceedings of the [87] Ran H Y, Colonius T. Numerical simulation of sound radi-
Royal Society of London (Series A), 1954, 222(1148): ated from a turbulent vortex ring[C]//Proceedings of the
1–32. 10th AIAA/CEAS Aeroacoustics Conference, 2004.
[72] Wang M, Lele S K, Moin P. Sound radiation during lo- [88] Le G T, Gloerfelt X, Corre C. Direct noise compu-
cal laminar breakdown in a low Mach-number boundary tation of trailing edge noise at high Reynolds num-
layer[J]. Journal of Fluid Mechanics, 1996, 319: 197–218. bers[C]//Proceedings of the 14th AIAA/CEAS Aeroa-
[73] Avital E J, Sandham N D, Luo K H. Calculation of basic coustics Conference (29th AIAA Aeroacoustics Confer-
sound radiation of axisymmetric jets by direct numerical ence). Vancouver, British Columbia Canada: AIAA,
simulations[J]. AIAA Journal, 1999, 37(2): 161–168. 2008.
[74] Lyrintzis A S. Review: the use of Kirchhoff’s method in [89] Ewert R, Schroder W. On the simulation of trailing edge
computational aeroacoustics[J]. Journal of Fluids Engi- noise with a hybrid LES/APE method[J]. Journal of
neering, 1994, 116(4): 665–676. Sound and Vibration, 2004, 270(3): 509–524.
[75] Morino L. A general theory of unsteady compressible po- [90] Freund J B, Lele S K, Moin P. Matching of near/far-
tential aerodynamics: NASA CR-2464[R]. 1974. field equations sets for direct computation of aerodynamic
[76] Morino L. Mathematical foundations of integral meth- sound[C]//Proceedings of the 15th Aero acoustics Confer-
ods[M]//Morino L. Computational methods in potential ence. Long Beach, CA: AIAA, 1993.
aerodynamics. Berlin: Springer, 1985. [91] De R W, Rubio G, Baelmans M, et al. Towards accurate
[77] Morino L, Tseng K. A general theory of unsteady com- hybrid prediction techniques for cavity flow noise applica-
pressible potential flows with applications to aero planes tions[J]. International Journal for Numerical Methods in
and rotors[M]//Banerjee P K, Morino L. Developments Fluids, 2009, 61(12): 1363–1387.
in boundary element methods. Barking UK: Elsevier Ap- [92] Bogey C, Gloerfelt X, Bailly C. Illustration of the inclu-
plied Science Publisher, 1990. sion of sound-flow interactions in lighthill’s equation[J].
[78] Doak P E. Analysis of internally generated sound in con- AIAA Journal, 2003, 41(8): 1604–1606.
tinuous materials. III. The momentum potential field de- [93] Cabana M, Fortune V, Jordan P. A look inside the lighthill
scription of fluctuating fluid motion as a basis for a unified source term[C]//Proceedings of the AIAA/CEAS Aeroa-
theory of internally generated sound[J]. Journal of Sound coustics Conference, Cambridge: AIAA, 2006.
and Vibration, 1973, 26(1): 91–120. [94] 曾赛. 对转桨无空泡线谱噪声数值模拟与实验研究 [D]. 北京:
[79] Howe M S. On the absorption of sound by turbulence and 中国舰船研究院, 2015.
other hydrodynamic flows[J]. Journal of Applied Mathe- [95] 常欣, 夏琨, 叶礼裕, 等. 对转桨无空泡噪声性能预报及影响
matics and Mechanics, 1984, 32(1–3): 187–209. 因素分析 [J]. 哈尔滨工程大学学报, 2018, 39(4): 635–643.
[80] Obermeier F. On a new representation of aeroacoustics Chang Xin, Xia Kun, Ye Liyu, et al. Prediction on non-
source distribution. II. Two-dimensional model flows[J]. cavitating noise performance of contra-rotating propeller
Acoustica, 1979, 42: 58–71. and influencing factors analysis[J]. Journal of Harbin En-