Page 165 - 《应用声学》2020年第3期
P. 165

第 39 卷 第 3 期             曾赛等: 水下对转螺旋桨流致辐射噪声机理与预报方法                                          485


             化噪声,国内学者王顺杰等             [51]  尝试使用声类比理           声形成机制的研究,如电解泡、火花泡、激光泡以及
             论建立水下对转螺旋桨的空化噪声模型,基本的考                            声全息照相技术等         [62−67] 。
             虑是将 Goldstein 方程右边的四极子和偶极子源项
             忽略,将空泡简化为单极子模型,通过求解简化的                            1.4  水下对转桨流致噪声预报方法
             Goldstein 方程给出对转螺旋桨空化噪声解。分析                           1.1∼1.3 节综述了水下对转螺旋桨流致辐射噪
             表明,在空化状态下,线谱幅度与宽带噪声幅度差别                           声预报的进展,无论是湍流噪声、旋转噪声还是空化
             减小,空化噪声整体噪声级提升。曾赛等                  [61]  通过空     噪声,建立流致辐射声源项是关键,声源的提取与计
             泡水筒试验测量了对转螺旋桨的空化噪声,并观察                            算主要有 3 种方法,即声类比理论              [68] 、Kirchhoff 理
             了空泡形成的过程。许多新的手段也被用于空泡噪                            论 [69]  和涡声理论   [70] 。3种方法的比较如表2所示。

                                        表 2  声类比理论、Kirchhoff 理论和涡声理论比较
                Table 2 Comparison of acoustic analogy, Kirchhoff method and vortices-induced noise theory


                                    声类比理论                     Kirchhoff 理论                  涡声理论
                                                        源于惠更斯理论,可以预报任意             声波的产生与流体中涡、势流以
                            属于非直接法,噪声源先验假定,
                                                        声源产生的声场,无需先验假定,            及涡之间的相互作用有关,声能
                理论特征        即将流场区划分为声源区和声波
                                                        但需要将控制面分为近场声源区             量的形成与转化是通过这类非线
                            动区分别进行模拟     [71]
                                                        和远场声波动区    [74]            性相互作用完成     [70−81]
                源场与声场       流场计算提供等效声源,源于声              源项与声场区域分离,仅在边界             源项与声场重合,在全流域模拟
                的耦合方式       分离,源项不包含声脉动      [72]       处重合                        流场
                            方法简洁,源项的形式直接,物理                                        精确的流场会给出精确的声场;
                                                        精确的流场会给出精确的声场;
                  优点        意义明确,源项可以找到对应表                                         给出了声辐射与散射的原因,对
                                                        工程应用广泛    [75−77]
                            述;工程应用广泛     [73]                                      源域的计算精度要求不高
                            需要声源的先验知识,无法预测                                         三维计算的正确性有待验证;工
                  缺点                                      对流场模拟的精度要求过高
                            声源的产生,忽略声脉动影响                                          程应用价值有待挖掘

                                                                   (3) 计算噪声的带宽选择。非定常流场模拟的
             2 水下对转桨流致噪声数值预报方法
                                                               步长决定了声场频率的分辨率,如果需要计算宽带

             2.1 对转桨流致噪声数值预报的难点                                噪声,则需要足够小的时间步长,这对于数值模拟资
                 数值计算方法是对水下对转螺旋桨流致辐射                           源形成巨大的挑战。
             噪声进行预报的重要方法,得益于计算机计算能力                                (4) 声场与流场的传输特性差异             [83] 。流场中的
             的飞速发展,对流场进行大规模数值模拟成为可能,                           声辐射传播具有各向同性,无色散、无耗散,而流场
             这就为声源项的提取提供了有力的方法。考虑到流                            中的涡传播则是高色散、高耗散的,且数值模拟的
             场与声场的量级差别,对转螺旋桨流致噪声的数值                            流场也是色散的,这样就无法保证声场计算的精度,
             预报面临着许多难点          [82] ,主要表现在:                   需要专门的色散保持方法解决该问题。
                 (1) 非线性效应影响。对转螺旋桨的流致辐射                            (5) 边界条件的选择        [84] 。数值计算的有限区域
             噪声是非线性、非稳态的过程,依赖于N-S方程的流                          与流致发声的无边界区域存在矛盾,通常需要在人
             场预报通常是非线性的,而声传播的过程则无需考                            工区域的边界上赋予边界条件,但边界条件导致的
             虑非线性,如何将这种线性与非线性问题统一进行                            虚假数值反射误差与声场能量处于同一量级,使得
             考虑是需要解决的难点。                                       数值预报的声场缺乏精度,因此通常需要采用无反
                 (2) 流动能量与声能量之间的量级差别巨大。                        射边界条件。
             通常流体动能远远大于的声能量,导致声场的幅度                                事实上,上述数值计算困难是气动声学与流体
             远小于湍流脉动的幅度,在数值计算值中要保证声                            声学共同面临的难点          [85] ,水下对转螺旋桨流致噪声
             场的计算精度则需要数值误差小于声场幅度,这对                            的数值模拟方法完全可以借鉴气动声学领域成功
             于计算资源形成了巨大的挑战。                                    的经验。
   160   161   162   163   164   165   166   167   168   169   170