Page 160 - 《应用声学》2020年第3期
P. 160
480 2020 年 5 月
on beamforming location method with improved search 1912–1918.
strategy[J]. Journal of Applied Acoustics, 2017, 36(4): Zhang Jie, Wang Gang. Enhanced semidefinite relax-
298–304. ation method for TDOA/FDOA-based source localization
[8] 肖栋, 向阳, 卓瑞岩, 等. 基于波束形成的多类型多声源定位 in wireless sensor networks[J]. Chinese Journal of Sensors
研究 [J]. 应用声学, 2017, 36(3): 220–227. and Actuators, 2018, 31(12): 1912–1918.
Xiao Dong, Xiang Yang, Zhuo Ruiyan, et al. Local- [15] 张传义, 卢晓. 基于广义互功率谱相位法的声源定位技术 [J].
ization of multiple sound source with multi-type based 东北大学学报 (自然科学版), 2018, 39(8): 1075–1079.
on beamforming[J]. Journal of Applied Acoustics, 2017, Zhang Chuanyi, Lu Xiao. Sound source localization
36(3): 220–227. technology based on generalized cross-power spectrum
[9] 于国栋, 宋永志, 王世赞. 稳健估计下的声源定位最小二乘算 phase[J]. Journal of Northeastern University(Natural Sci-
法 [J]. 应用声学, 2017, 36(1): 26–31. ence), 2018, 39(8): 1075–1079.
Yu Guodong, Song Yongzhi, Wang Shizan. Least squares [16] 杨祥清, 汪增福. 基于麦克风阵列的三维声源定位算法及其实
algorithm for sound source localization based on robust 现 [J]. 声学技术, 2008, 27(2): 260–265.
estimation[J]. Journal of Applied Acoustics, 2017, 36(1): Yang Xiangqing, Wang Zengfu. 3D sound source local-
26–31. ization algorithm and its implementation based on micro-
[10] 丁浩, 李春晓, 金江明, 等. 可识别声源深度的三维声聚焦波 phone array[J]. Technical Acoustics, 2008, 27(2): 260–265.
束形成方法 [J]. 传感技术学报, 2013, 26(2): 175–181. [17] Davoodi S, Mostafapour A. Modeling acoustic emission
Ding Hao, Li Chunxiao, Jin Jiangming, et al. Sound signals caused by leakage in pressurized gas pipe[J]. Jour-
source depth identifiable three-dimensional focused beam- nal of Nondestructive Evaluation, 2013, 32(1): 67–80.
forming[J]. Chinese Journal of Sensors and Actuators, [18] Liu C W, Li Y X, Meng L Y, et al. Study on leak-acoustics
2013, 26(2): 175–181. generation mechanism for natural gas pipelines[J]. Jour-
[11] 王琳, 姜根山, 安连锁. 炉内管道泄漏声检测与定位系统的研 nal of Loss Prevention in the Process Industries, 2014, 32:
究现状 [J]. 应用声学, 2010, 29(1): 1–10. 174–181.
Wang Lin, Jiang Genshan, An Liansuo. Research status [19] 宗军君, 崔逊学. 多站测向交叉定位的加权最大似然估计算法
of the acoustic detection and location system for boiler 及其精度分析 [J]. 电光与控制, 2015, 22(11): 11–13, 47.
tube leakage[J]. Journal of Applied Acoustics, 2010, 29(1): Zong Junjun, Cui Xunxue. Algorithm of weighted max-
1–10. imum likelihood estimation in multi-station DF crossing
[12] Perez-Lorenzo J M, Viciana-Abad R, Rech-Lopez P. Eval- localization and its accuracy analysis[J]. Electronics Op-
uation of generalized cross-correlation methods for direc- tics & Control, 2015, 22(11): 11–13, 47.
tion of arrival estimation using two microphones in real [20] 沈伟, 徐斐, 伍光新, 等. 一种利用多站角度融合抗干扰方法
environments[J]. Applied Acoustics, 2012, 73(8): 698–712. 研究 [J]. 现代雷达, 2018, 40(1): 47–50.
[13] 马方立, 徐扬, 徐鹏. 基于大地经纬度的二维 TDOA 无源定 Shen Wei, Xu Fei, Wu Guangxin, et al. A study on
位 [J]. 通信学报, 2019, 40(5): 136–143. anti-jamming method using angle fusion from multi-site
Ma Lifang, Xu Yang, Xu Peng. 2D-TDOA passive loca- radars[J]. Modern Radar, 2018, 40(1): 47–50.
tion based on geodetic longitude and latitude[J]. Journal [21] Knapp C, Carter G. The generalized correlation method
on Communications, 2019, 40(5): 136–143. for estimation of time delay[J]. IEEE Transactions on
[14] 张杰, 王刚. 无线传感器网络中基于 TDOA/FDOA 的增强 Acoustics, Speech, and Signal Processing, 2003, 24(4):
半正定松弛定位算法研究 [J]. 传感技术学报, 2018, 31(12): 320–327.