Page 57 - 《应用声学》2021年第6期
P. 57
第 40 卷 第 6 期 潘婷等: 经颅聚焦超声联合微泡开放血脑屏障的数值仿真研究 853
后保持不变趋势。 [6] Lu C T, Zhao Y Z, Wong H L, et al. Current approaches
(3) 随声功率的增大MI > 0.3的区域面积增大, to enhance CNS delivery of drugs across the brain barri-
ers[J]. International Journal of Nanomedicine, 2014, 9(1):
随频率和微泡初始密度的增大 MI > 0.3 的区域面
2241–2257.
积减小,而随着微泡初始半径的增大MI > 0.3的区 [7] Liu Y, Hashizume K, Samoto K, et al. Repeated, short-
域面积先减小后几乎保持不变,在微泡初始半径为 term ischemia augments bradykinin-mediated opening of
6 µ m时,MI max 最大。 the blood-tumor barrier in rats with RG2 glioma[J]. Neu-
rological Research, 2001, 23(6): 631–640.
(4) 当声功率为 0.5 W 时,次谐波、超谐波强 [8] Jogani V, Jinturkar K, Vyas T, et al. Recent patents
度较大;次谐波和超谐波的强度随频率和微泡初始 review on intranasal administration for CNS drug deliv-
密度增大而增大,当微泡初始半径为 1 ∼ 5 µm 时, ery[J]. Recent Patents on Drug Delivery & Formulation,
2008, 2(1): 25–40.
次谐波和超谐波维持在较低水平,当初始半径大于
[9] Barnard J W, Fry W J, Fry F J, et al. Effects of high
5 µm时,次谐波和超谐波强度显著增加。 intensity ultrasound on the central nervous system of the
(5) 随声功率和微泡初始密度的增大,宽带噪 cat[J]. Journal of Comparative Neurology, 1955, 103(3):
459–484.
声强度增大,超声频率和微泡初始半径的变化对宽
[10] Hynynen K, McDannold N, Vykhodtseva N, et al. Non-
带噪声的影响无明显规律。 invasive MR imaging-guided focal opening of the blood-
基于上述结果可得到如下结论: brain barrier in rabbits[J]. Radiology, 2001, 220(3):
640–646.
(1) 微泡可使超声能量集聚,形成次谐波和超
[11] Madsen S J, Hirschberg H. Site-specific opening of the
谐波。 blood-brain barrier[J]. Journal of Biophotonics, 2010,
(2) 随着声功率和微泡密度的增大,焦点处 MI 3(5/6): 356–357.
和宽带噪声强度增大,当声功率过大和微泡密度过 [12] Alli S, Figueiredo C A, Golbourn B, et al. Brainstem
blood brain barrier disruption using focused ultrasound:
高时,可能损伤靶区组织。
a demonstration of feasibility and enhanced doxorubicin
(3) 超声频率的增大会使次谐波和超谐波强度 delivery[J]. Journal of Controlled Release: Official Jour-
增大,微泡半径较小时,空化强度维持在较低水平, nal of the Controlled Release Society, 2018, 281: 29–41.
[13] Shin J, Kong C, Cho J S, et al. Focused ultrasound-
当微泡半径大于 5 µm 时,次谐波和超谐波强度显
mediated noninvasive blood-brain barrier modulation:
著增大。 preclinical examination of efficacy and safety in vari-
ous sonication parameters[J]. Neurosurgical Focus, 2018,
致谢 感谢天津医科大学肿瘤医院提供的志愿者 44(2): E15.
头颅CT扫描数据。 [14] Yoon K, Lee W, Chen E, et al. Localized blood-brain
barrier opening in ovine model using image-guided tran-
scranial focused ultrasound[J]. Ultrasound in Medicine &
参 考 文 献 Biology, 2019, 45(9): 2391–2404.
[15] Karakatsani M E M, Samiotaki G M, Downs M E, et al.
[1] Daneman R, Prat A. The blood-brain barrier[J]. Cold Targeting effects on the volume of the focused ultrasound-
Spring Harbor Perspectives in Biology, 2015, 7(1): induced blood-brain barrier opening in nonhuman pri-
a020412. mates in vivo[J]. IEEE Transactions on Ultrasonics, Fer-
[2] Xu L, Nirwane A, Yao Y. Basement membrane and blood- roelectrics, and Frequency Control, 2017, 64(5): 798–810.
brain barrier[J]. Stroke and Vascular Neurology, 2018, [16] Kobus T, Vykhodtseva N, Pilatou M, et al. Safety val-
4(2): 78–82. idation of repeated blood-brain barrier disruption using
[3] Pardridge W M. The blood-brain barrier: bottleneck in focused ultrasound[J]. Ultrasound in Medicine & Biology,
brain drug development[J]. The Journal of the American 2016, 42(2): 481–492.
Society for Experimental NeuroTherapeutics, 2005, 2(1): [17] McDannold N, Vykhodtseva N, Hynynen K. Blood-brain
13–14. barrier disruption induced by focused ultrasound and cir-
[4] Haluska M, Anthony M L. Osmotic blood-brain barrier culating preformed microbubbles appears to be character-
modification for the treatment of malignant brain tu- ized by the mechanical index[J]. Ultrasound in Medicine
mors[J]. Clinical Journal of Oncology Nursing, 2004, 8(3): & Biology, 2008, 34(5): 834–840.
263–267. [18] Tsai H C, Tsai C H, Chen W S, et al. Safety evaluation
[5] Wu T, Zhang A, Lu H, et al. The role and mechanism of frequent application of microbubble-enhanced focused
of borneol to open the blood-brain barrier[J]. Integrative ultrasound blood-brain-barrier opening[J]. Scientific Re-
Cancer Therapies, 2018, 17(3): 806–812. ports, 2018, 8(1): 17720.