Page 57 - 《应用声学》2021年第6期
P. 57

第 40 卷 第 6 期          潘婷等: 经颅聚焦超声联合微泡开放血脑屏障的数值仿真研究                                          853


             后保持不变趋势。                                            [6] Lu C T, Zhao Y Z, Wong H L, et al. Current approaches
                 (3) 随声功率的增大MI > 0.3的区域面积增大,                       to enhance CNS delivery of drugs across the brain barri-
                                                                   ers[J]. International Journal of Nanomedicine, 2014, 9(1):
             随频率和微泡初始密度的增大 MI > 0.3 的区域面
                                                                   2241–2257.
             积减小,而随着微泡初始半径的增大MI > 0.3的区                          [7] Liu Y, Hashizume K, Samoto K, et al. Repeated, short-
             域面积先减小后几乎保持不变,在微泡初始半径为                                term ischemia augments bradykinin-mediated opening of
             6 µ m时,MI max 最大。                                     the blood-tumor barrier in rats with RG2 glioma[J]. Neu-
                                                                   rological Research, 2001, 23(6): 631–640.
                 (4) 当声功率为 0.5 W 时,次谐波、超谐波强                      [8] Jogani V, Jinturkar K, Vyas T, et al. Recent patents
             度较大;次谐波和超谐波的强度随频率和微泡初始                                review on intranasal administration for CNS drug deliv-
             密度增大而增大,当微泡初始半径为 1 ∼ 5 µm 时,                          ery[J]. Recent Patents on Drug Delivery & Formulation,
                                                                   2008, 2(1): 25–40.
             次谐波和超谐波维持在较低水平,当初始半径大于
                                                                 [9] Barnard J W, Fry W J, Fry F J, et al. Effects of high
             5 µm时,次谐波和超谐波强度显著增加。                                  intensity ultrasound on the central nervous system of the
                 (5) 随声功率和微泡初始密度的增大,宽带噪                            cat[J]. Journal of Comparative Neurology, 1955, 103(3):
                                                                   459–484.
             声强度增大,超声频率和微泡初始半径的变化对宽
                                                                [10] Hynynen K, McDannold N, Vykhodtseva N, et al. Non-
             带噪声的影响无明显规律。                                          invasive MR imaging-guided focal opening of the blood-
                 基于上述结果可得到如下结论:                                    brain barrier in rabbits[J]. Radiology, 2001, 220(3):
                                                                   640–646.
                 (1) 微泡可使超声能量集聚,形成次谐波和超
                                                                [11] Madsen S J, Hirschberg H. Site-specific opening of the
             谐波。                                                   blood-brain barrier[J]. Journal of Biophotonics, 2010,
                 (2) 随着声功率和微泡密度的增大,焦点处 MI                          3(5/6): 356–357.
             和宽带噪声强度增大,当声功率过大和微泡密度过                             [12] Alli S, Figueiredo C A, Golbourn B, et al. Brainstem
                                                                   blood brain barrier disruption using focused ultrasound:
             高时,可能损伤靶区组织。
                                                                   a demonstration of feasibility and enhanced doxorubicin
                 (3) 超声频率的增大会使次谐波和超谐波强度                            delivery[J]. Journal of Controlled Release: Official Jour-
             增大,微泡半径较小时,空化强度维持在较低水平,                               nal of the Controlled Release Society, 2018, 281: 29–41.
                                                                [13] Shin J, Kong C, Cho J S, et al.  Focused ultrasound-
             当微泡半径大于 5 µm 时,次谐波和超谐波强度显
                                                                   mediated noninvasive blood-brain barrier modulation:
             著增大。                                                  preclinical examination of efficacy and safety in vari-
                                                                   ous sonication parameters[J]. Neurosurgical Focus, 2018,
             致谢     感谢天津医科大学肿瘤医院提供的志愿者                             44(2): E15.
             头颅CT扫描数据。                                          [14] Yoon K, Lee W, Chen E, et al. Localized blood-brain
                                                                   barrier opening in ovine model using image-guided tran-
                                                                   scranial focused ultrasound[J]. Ultrasound in Medicine &
                            参 考     文   献                          Biology, 2019, 45(9): 2391–2404.
                                                                [15] Karakatsani M E M, Samiotaki G M, Downs M E, et al.
              [1] Daneman R, Prat A. The blood-brain barrier[J]. Cold  Targeting effects on the volume of the focused ultrasound-
                 Spring Harbor Perspectives in Biology, 2015, 7(1):  induced blood-brain barrier opening in nonhuman pri-
                 a020412.                                          mates in vivo[J]. IEEE Transactions on Ultrasonics, Fer-
              [2] Xu L, Nirwane A, Yao Y. Basement membrane and blood-  roelectrics, and Frequency Control, 2017, 64(5): 798–810.
                 brain barrier[J]. Stroke and Vascular Neurology, 2018,  [16] Kobus T, Vykhodtseva N, Pilatou M, et al. Safety val-
                 4(2): 78–82.                                      idation of repeated blood-brain barrier disruption using
              [3] Pardridge W M. The blood-brain barrier: bottleneck in  focused ultrasound[J]. Ultrasound in Medicine & Biology,
                 brain drug development[J]. The Journal of the American  2016, 42(2): 481–492.
                 Society for Experimental NeuroTherapeutics, 2005, 2(1):  [17] McDannold N, Vykhodtseva N, Hynynen K. Blood-brain
                 13–14.                                            barrier disruption induced by focused ultrasound and cir-
              [4] Haluska M, Anthony M L. Osmotic blood-brain barrier  culating preformed microbubbles appears to be character-
                 modification for the treatment of malignant brain tu-  ized by the mechanical index[J]. Ultrasound in Medicine
                 mors[J]. Clinical Journal of Oncology Nursing, 2004, 8(3):  & Biology, 2008, 34(5): 834–840.
                 263–267.                                       [18] Tsai H C, Tsai C H, Chen W S, et al. Safety evaluation
              [5] Wu T, Zhang A, Lu H, et al. The role and mechanism  of frequent application of microbubble-enhanced focused
                 of borneol to open the blood-brain barrier[J]. Integrative  ultrasound blood-brain-barrier opening[J]. Scientific Re-
                 Cancer Therapies, 2018, 17(3): 806–812.           ports, 2018, 8(1): 17720.
   52   53   54   55   56   57   58   59   60   61   62