Page 12 - 《应用声学》2022年第6期
P. 12

858                                                                                 2022 年 11 月


                                                               目标声源的位置变化更具鲁棒性。仿真实验的结果
                                                               验证了该方法的有效性。
                      d

                                                                              参 考 文        献
                      d
                                                                 [1] Yoshioka T, Sehr A, Delcroix M, et al. Making machines
                                                                   understand us in reverberant rooms: robustness against
                          图 8  传声器位置示意图                            reverberation for automatic speech recognition[J]. IEEE
                                                                   Signal Processing Magazine, 2012, 29(6): 114–126.
                  Fig. 8 Diagram of the microphone position
                                                                 [2] Beutelmann R, Brand T. Prediction of speech intelli-
                                                                   gibility in spatial noise and reverberation for normal-
                             ຉ־ηՂ      ԝຉ־ηՂ                       hearing and hearing-impaired listeners[J]. The Journal of
                             ࣜదឭភ̡ͯᎶቊԫೝ฾ᄊԝຉ־ηՂ                     the Acoustical Society of America, 2006, 120(1): 331–342.
                    2.5                                          [3] 齐园蕾, 杨飞然, 杨军. 基于卡尔曼滤波的低复杂度去混响算
                                                                   法 [J]. 应用声学, 2018, 37(4): 559–566.
                    2.0
                                                                   Qi Yuanlei, Yang Feiran, Yang Jun. Kalman filter based
                                                                   low-complexity dereverberation algorithm[J]. Journal of
                   PESQ४Ѭ  1.5                                   [4] 张雄伟, 李轶南, 郑昌艳, 等. 语音去混响技术的研究进展与
                                                                   Applied Acoustics, 2018, 37(4): 559–566.
                    1.0
                                                                   展望 [J]. 数据采集与处理, 2017, 32(6): 1069–1081.
                    0.5                                            Zhang Xiongwei, Li Yinan, Zheng Changyan, et al.
                                                                   Speech dereverberation: review of state-of-the-arts and
                     0                                             prospects[J]. Journal of Data Acquisition and Processing,
                           1          2         3
                                                                   2017, 32(6): 1069–1081.
                                   ᡰሏ d/m
                                                                 [5] Lebart K, Boucher J M, Denbigh P N. A new method
                                 (a) PESQ४Ѭ
                    4.0                                            based on spectral subtraction for speech dereverbera-
                                                                   tion[J]. Acta Acustica united with Acustica, 2001, 87(3):
                    3.5
                                                                   359–366.
                    3.0                                          [6] Habets P E. Multi-channel speech dereverberation based
                   SRMR४Ѭ  2.5                                     on a statistical model of late reverberation[C]. IEEE In-
                    2.0
                                                                   ternational Conference on Acoustics, Speech and Signal
                    1.5
                                                                   Processing, 2005, 4: 173–176.
                    1.0                                          [7] Nakatani T, Yoshioka T, Kinoshita K, et al. Speech dere-
                                                                   verberation based on variance-normalized delayed linear
                    0.5
                                                                   prediction[J]. IEEE Transactions on Audio Speech and
                      0
                           1          2         3                  Language Processing, 2010, 18(7): 1717–1731.
                                    ᡰሏ d/m                       [8] Nakatani T, Yoshioka T, Kinoshita K, et al.  Blind
                                  (b) SRMR४Ѭ                       speech dereverberation with multi-channel linear predic-
                图 9 声源距传声器不同距离时算法平均 PESQ 和                         tion based on short time Fourier transform represen-
                                                                   tation[C]. IEEE International Conference on Acoustics,
                SRMR 得分
                                                                   Speech and Signal Processing, 2008: 85–88.
               Fig.9 The algorithm averages PESQ and SRMR
                                                                 [9] Xiang T, Lu J, Chen K. Multi-channel adaptive derever-
               scores when the sound source is different from the   beration robust to abrupt change of target speaker posi-
               microphone                                          tion[J]. The Journal of the Acoustical Society of America,
                                                                   2019, 145(3): EL250–EL256.
             4 结论                                               [10] 李毅. 自适应滤波及滤波算法研究 [D]. 西安: 西北工业大学,
                                                                   2003.
                                                                [11] Yoshioka T, Tachibana H, Nakatani T, et al.  Adap-
                 本文研究了一种能够检测说话人位置变化的                               tive dereverberation of speech signals with speaker po-
             自适应语声去混响方法,该方法采用 RLS 算法实现                             sition change detection[C]. IEEE International Confer-
             滤波器系数的自适应估计更新,如果声源的位置发                                ence on Acoustics, Speech and Signal Processing, 2009:
                                                                   3733–3736.
             生变化,该方法将检测这些变化并重新初始化滤波
                                                                [12] 向腾. 混响环境下的语音增强研究 [D]. 南京: 南京大学,
             器系数的估计,使基于RLS的MCLP去混响方法对                              2020.
   7   8   9   10   11   12   13   14   15   16   17