Page 70 - 《应用声学》2023年第1期
P. 70

66                                                                                   2023 年 1 月


                 Xiao Qianghong, Zhou Qiang, Wang Ying, et al. Research  2213.
                 on detecting method of ceramic structure defect based on  [15] 黄沁元, 谢罗峰, 殷国富, 等. 基于变分模态分解和天牛须搜
                 coin-tap sound time-frequency analysis[J]. China Ceram-  索的磁瓦内部缺陷声振检测 [J]. 振动与冲击, 2020, 39(17):
                 ics, 2017, 53(9): 47–53.                          124–133.
              [8] 梁钊. 基于敲击信号的刹车片内部缺陷检测方法研究 [D]. 淄                  Huang Qinyuan, Xie Luofeng, Yin Guofu, et al. Acoustic-
                 博: 山东理工大学, 2019.                                  vibration detection for internal defects of magnetic tile
              [9] 蒋志迪. 一种基于小波分解和压缩感知的冲击声学无损检测                      based on VMD and BAS[J]. Journal of Vibration and
                 方法 [J]. 电子与信息学报, 2012, 34(12): 3021–3026.         Shock, 2020, 39(17): 124–133.
                 Jiang Zhidi. A new impact-acoustics non-destructive test
                                                                [16] 胡含兵. 基于 MODWPT 与随机森林的模拟电路故障诊断研
                 method based on wavelet decomposition and compressive
                                                                   究 [D]. 长沙: 湖南师范大学, 2019.
                 sensing[J]. Journal of Electronics & Information Technol-
                                                                [17] 万晓静, 孙文磊, 陈坤. 小波包能量熵和改进的 LSSVM 在风
                 ogy, 2012, 34(12): 3021–3026.
                                                                   力机轴承故障诊断中的应用 [J]. 水电能源科学, 2021, 39(2):
             [10] Deng X, Wang Q, Chen H, et al. Eggshell crack detection
                                                                   142–145.
                 using a wavelet-based support vector machine[J]. Comput-
                                                                   Wan Xiaojing, Sun Wenlei, Chen Kun. Application of
                 ers and Electronics in Agriculture, 2010, 70(1): 135–143.
                                                                   wavelet packet energy entropy and improved LSSVM in
             [11] 陈华华. 风电叶片脱层的无损检测技术研究 [D]. 南京: 南京
                                                                   fault diagnosis of wind turbine bearings[J]. Water Re-
                 航空航天大学, 2015.
                                                                   sources and Power, 2021, 39(2): 142–145.
             [12] 张涛, 高新意, 唐伟, 等. 基于神经网络的玻璃缺陷声学检测
                                                                [18] 陈石, 张兴敢. 基于小波包能量熵和随机森林的级联 H 桥多
                 方法 [J]. 声学技术, 2018, 37(5): 488–495.
                                                                   电平逆变器故障诊断 [J]. 南京大学学报 (自然科学), 2020,
                 Zhang Tao, Gao Xinyi, Tang Wei, et al. Acoustic detec-
                                                                   56(2): 284–289.
                 tion method of glass defects based on neural network[J].
                                                                   Chen Shi, Zhang Xinggan. Fault diagnosis for cascaded H
                 Technical Acoustics, 2018, 37(5): 488–495.
             [13] 梁钊, 邱晓梅, 王峰, 等. 基于能量特征的刹车片内部缺陷检测                 bridge multilevel inverter based on wavelet packet energy
                                                                   entropy and random forest[J]. Journal of Nanjing Univer-
                 方法 [J]. 组合机床与自动化加工技术, 2018(11): 89–91. 95.
                                                                   sity (Natural Science), 2020, 56(2): 284–289.
                 Liang Zhao, Qiu Xiaomei, Wang Feng, et al. Method of
                 internal defect detection of brake pads based on energy  [19] 杨冬锋, 陈盛开, 刘晓军, 等. 基于自适应 VMD 和时 -频分段
                 features[J]. Modular Machine Tool & Automatic Manu-  能量熵特征的过电压信号识别 [J]. 电网技术, 2019, 43(12):
                 facturing Technique, 2018(11): 89–91, 95.         4597–4604.
             [14] 冉茂霞, 黄沁元, 刘鑫, 等. 基于优化变分模态分解的磁瓦                   Yang Dongfeng, Chen Shengkai, Liu Xiaojun, et al. Re-
                 内部缺陷检测 [J]. 浙江大学学报 (工学版), 2020, 54(11):           search on overvoltage signal recognition based on adap-
                 2158–2168, 2213.                                  tive VMD and time-frequency segment energy entropy[J].
                 Ran Maoxia, Huang Qinyuan, Liu Xin, et al. Internal  Power System Technology, 2019, 43(12): 4597–4604.
                 defect detection of arc magnets based on optimized vari-  [20] Mahmud K, Azam S, Karim A, et al. Machine learning
                 ational mode decomposition[J]. Journal of Zhejiang Uni-  based PV power generation forecasting in Alice springs[J].
                 versity (Engineering Science), 2020, 54(11): 2158–2168,  IEEE Access, 2021, 9: 46117–46128.
   65   66   67   68   69   70   71   72   73   74   75