Page 162 - 《应用声学》2023年第4期
P. 162
824 2023 年 7 月
tion[C]//International Conference on Medical Image 172–180, 205.
Computing and Computer-Assisted Intervention, 2015. [30] 侯向丹, 赵一浩, 刘洪普, 等. 融合残差注意力机制的 UNet 视
[23] Narayanaswamy V S, Katoch S, Thiagarajan J J, et al. 盘分割 [J]. 中国图象图形学报, 2020, 25(9): 201–215.
Audio source separation via multi-scale learning with di- Hou Xiangdan, Zhao Yihao, Liu Hongpu, et al. Optic
lated dense U-Nets[J]. arXiv Preprint, arXiv: 1904.04161, disk segmentation by combining UNet and residual atten-
2019. tion mechanism[J]. Journal of Image and Graphics, 2020,
[24] Shi Z, Lin H, Liu L, et al. Furcanext: end-to-end monau- 25(9): 201–215.
ral speech separation with dynamic gated dilated tem-
[31] 邢益搏, 张雄伟, 郑昌艳, 等. 骨导语音库的建立与骨气导语
poral convolutional networks[J]. arXiv Preprint, arXiv:
音的互信息分析 [J]. 声学技术, 2019, 38(3): 312–316.
1902.04891, 2019.
Xing Yibo, Zhang Xiongwei, Zheng Changyan, et al. Es-
[25] Grzywalski T, Drgas S. Using recurrences in time and
tablishment of bone-conducted speech database and mu-
frequency within U-net architecture for speech enhance-
tual information analysis between bone and air-conducted
ment[C]//ICASSP 2019–2019 IEEE International Con-
speeches[J]. Technical Acoustics, 2019, 38(3): 312–316.
ference on Acoustics, Speech and Signal Processing
[32] Rix A W, Beerends J G, Hollier M P, et al. Per-
(ICASSP), 2019.
ceptual evaluation of speech quality (PESQ): a new
[26] Wu K, Luo J, Zeng Q, et al. Improvement in signal-to-
method for speech quality assessment of telephone net-
noise ratio of liquid-state NMR spectroscopy via a deep
works and codecs[C]//Acoustics, Speech, and Signal Pro-
neural network DN-UNet[J]. Analytical Chemistry, 2020,
cessing, 2001 Proceedings (ICASSP ’01) 2001 IEEE Inter-
93(3): 1377–1382.
national Conference on, 2001.
[27] Ablavatski A, Lu S, Cai J. Enriched deep recur-
[33] Taal C H, Hendriks R C, Heusdens R, et al. A short-
rent visual attention model for multiple object recogni-
time objective intelligibility measure for time-frequency
tion[C]//Applications of Computer Vision, 2017.
[28] Paliwal K K, Wojcicki K, Shannon B J. The importance of weighted noisy speech[C]//2010 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, 2010.
phase in speech enhancement[J]. Speech Communication,
2011, 53(4): 465–494. [34] Gray A, Markel J. Distance measures for speech process-
[29] 董月, 冯华君, 徐之海, 等. Attention Res-Unet: 一种高 ing[J]. IEEE Transactions on Acoustics, Speech, and Sig-
效阴影检测算法 [J]. 浙江大学学报 (工学版), 2019, 53(2): nal Processing, 1976, 24(5): 380–391.
172–180, 205. [35] Tan K, Wang D L. A convolutional recurrent neural net-
Dong Yue, Feng Huajun, Xu Zhihai, et al. Attention Res- work for real-time speech enhancement[C]//Interspeech
Unet: an efficient shadow detection algorithm[J]. Journal 2018, Hyderabad, India, 2018.
of Zhejiang University(Engineering Science), 2019, 53(2):