Page 134 - 《应用声学》2024年第1期
P. 134

130                                                                                  2024 年 1 月


                 图像识别方法 [J]. 中国测试, 2020, 46(5): 108–113.        [18] Mercat J, Gilles T, El Zoghby N, et al.  Multi-head
                 Wang Xin, Zhao Fei, Jiang Zuofu, et al. Power equipment  attention for multi-modal joint vehicle motion forecast-
                 image recognition method based on transfer learning and  ing[C]//2020 IEEE International Conference on Robotics
                 convolutional neural network[J]. China Measurement &  and Automation (ICRA). IEEE, 2020: 9638–9644.
                 Test, 2020, 46(5): 108–113.                    [19] Yaghoobi M, Daudet L, Davies M E. Parametric dictio-
             [12] 黄文礼, 茆骥, 张银胜, 等. 基于深度学习的变压器故障信号                  nary design for sparse coding[J]. IEEE Transactions on
                 识别算法 [J]. 电子技术应用, 2023, 49(3): 54–60.             Signal Processing, 2009, 57(12): 4800–4810.
                 Huang Wenli, Mao Ji, Zhang Yinsheng, et al.  Deep  [20] Deng C, Yang E, Liu T, et al. Unsupervised semantic-
                 learning based transformer fault signal recognition algo-  preserving adversarial hashing for image search[J].
                 rithm[J]. Application of Electronic Technique, 2023, 49(3):  IEEE Transactions on Image Processing, 2019, 28(8):
                 54–60.                                            4032–4044.
             [13] Zhang Y, Chen X. Motif difference field: a simple and  [21] Zhang Y, Wang X, Tang H. An improved Elman neural
                 effective image representation of time series for classifica-  network with piecewise weighted gradient for time series
                 tion[J]. arXiv Preprint, arXiv: 2001.07582, 2020.  prediction[J]. Neurocomputing, 2019, 359: 199–208.
             [14] Zhang Y, Gan F, Chen X. Motif difference field: an ef-  [22] Alzubaidi L, Zhang J, Humaidi A J, et al. Review of deep
                 fective image-based time series classification and appli-  learning: concepts, CNN architectures, challenges, appli-
                 cations in machine malfunction detection[C]//2020 IEEE  cations, future directions[J]. Journal of Big Data, 2021, 8:
                 4th Conference on Energy Internet and Energy System  1–74.
                 Integration (EI2). IEEE, 2020: 3079–3083.      [23] Jiang H, Xu J, Shi R, et al. A multi-label deep learn-
             [15] Kim J H, On K W, Lim W, et al. Hadamard product  ing model with interpretable grad-CAM for diabetic
                 for low-rank bilinear pooling[J]. arXiv Preprint, arXiv:  retinopathy classification[C]//2020 42nd Annual Interna-
                 1610.04325, 2016.                                 tional Conference of the IEEE Engineering in Medicine &
             [16] Zhang J, Chang W C, Yu H F, et al. Fast multi-resolution  Biology Society (EMBC). IEEE, 2020: 1560–1563.
                 transformer fine-tuning for extreme multi-label text clas-  [24] 颜君凯, 马宏忠, 李凯, 等. 基于振动信号的变压器绕组松动
                 sification[J]. Advances in Neural Information Processing  故障诊断方法 [J]. 电力系统自动化, 2017, 41(3): 122–128.
                 Systems, 2021, 34: 7267–7280.                     Yan Junkai, Ma Hongzhong, Li Kai, et al. Vibration sig-
             [17] Zhang J, Zhao H, Li J. TRS: transformers for remote sens-  nal based diagnosis method for looseness fault of trans-
                 ing scene classification[J]. Remote Sensing, 2021, 13(20):  former winding[J]. Automation of Electric Power Systems,
                 4143.                                             2017, 41(3): 122–128.
   129   130   131   132   133   134   135   136   137   138   139