Page 244 - 《应用声学》2024年第6期
P. 244
1420 2024 年 11 月
定位实验为例(如图16(a)所示),当冲击点位于传感 [3] Ricci F, Monaco E, Boffa N D, et al. Guided waves for
阵元对角上时,传感阵元对形成的双曲线近似于一 structural health monitoring in composites: a review and
implementation strategies[J]. Progress in Aerospace Sci-
条直线,此时定位点可能会在对角线上发生较大偏
ences, 2022, 129: 100790.
移,这也就是该部分组定位误差较大的原因。 [4] Qiu L, Yuan S, Zhang X, et al. A time reversal focusing
based impact imaging method and its evaluation on com-
4 结论 plex composite structures[J]. Smart Materials & Struc-
tures, 2011, 20(10): 105014.
(1) 基于声发射技术中声源定位的三角定位方 [5] Jang B, Kim C. Impact localization of composite stiffened
panel with triangulation method using normalized mag-
法,在传感阵列中有效传感阵元数量少于三角定位
nitudes of fiber optic sensor signals[J]. Composite Struc-
方法所需的最少阵元数量 (3 个阵元) 情况下,提出 tures, 2019, 211: 522–529.
从有效传感器收集的声发射信号中挖掘与声源相 [6] McLaskey G C, Glaser S D, Grosse C U. Beamforming
array techniques for acoustic emission monitoring of large
关的额外边界反射信息以弥补部分传感器失效导
concrete structures[J]. Journal of Sound and Vibration,
致信息不足的问题。结果表明:混响中边界反射信 2010, 329(12): 2384–2394.
息挖掘补充能够在有效阵元不足情况下完成精确 [7] He T, Xie Y, Shan Y, et al. Localizing two acoustic emis-
sion sources simultaneously using beamforming and sin-
损伤定位,且通过边界信息补充后的缺失双阵元阵
gular value decomposition[J]. Ultrasonics, 2018, 85: 3–22.
列改善了原传感阵列在对角区域某些特殊点的定 [8] Ciampa F, Meo M. A new algorithm for acoustic emission
位精度,其平均定位误差为 1.47 cm,实现了对损伤 localization and flexural group velocity determination in
anisotropic structures[J]. Composites Part A Applied Sci-
的精确定位。
ence & Manufacturing, 2010, 41(12): 1777–1786.
(2) 当声发射传感阵元均有效时,即在全阵元 [9] Ciampa F, Meo M, Barbieri E. Impact localization in com-
阵列的情况下,损伤定位误差最小,平均定位误 posite structures of arbitrary cross section[J]. Structural
Health Monitoring, 2012, 11(6): 643–655.
差为 1.06 cm;当声发射传感阵列中只有 3 个阵元
[10] Kundu T. A new technique for acoustic source localization
有效时,即在缺失单阵元的情况下,损伤定位精度 in an anisotropic plate without knowing its material prop-
最低,缺失单阵元中的不同阵列平均定位误差在 erties[C]. 6th European Workshop on Structural Health
1.63∼1.93 cm之间。 Monitoring, Dresden, Germany, 2012.
[11] Sen N, Mateusz G, Packo P, et al. Square-shaped sen-
(3) 提出的损伤定位信息扩充方法,避免了当 sor clusters for acoustic source localization in anisotropic
传感器失效导致信息获取不足时,声发射检测技术 plates by wave front shape-based approach[J]. Mechanical
误判或者漏判情况的发生,且该方法可以在增强损 Systems and Signal Processing, 2021, 153: 107489.
[12] 陈浩, 李磊, 王秀明. 微地震监测技术研究进展 ——震源成像
伤检测系统以及算法稳定性方面提供思路。 的相对定位法 [J]. 应用声学, 2018, 37(1): 34–41.
(4) 复合材料结构仍然面临着复杂的服役工况, Chen Hao, Li Lei, Wang Xiuming. Research progress of
当传感阵元全部老化或者黏结剂失效后,监测系统 microseismic monitoring technology: waveform-based rel-
ative location methods[J]. Journal of Applied Acoustics,
将彻底失效。此时如何确保传感网络的寿命高于或
2018, 37(1): 34–41.
者等于结构材料寿命是当下结构健康监测技术需 [13] 张延兵, 宋高峰, 朱峰. 基于时差收敛算法的声发射源定位方
要重点解决的问题。 法 [J]. 无损检测 2020, 42(4): 60–64.
Zhang Yanbing, Song Gaofeng, Zhu Feng. A method of
acoustic emission source location based on time difference
参 考 文 献 convergence algorithm[J]. Journal of Nondestructive Test-
ing, 2018, 37(1): 34–41.
[1] 陈雪峰, 杨志勃, 田绍华, 等. 复合材料结构损伤识别与健康 [14] 何田, 肖登红, 刘献栋, 等. 基于近场波束形成法的声发射源
监测展望 [J]. 振动、测试与诊断, 2018, 38(1): 1–10, 202. 定位研究 [J]. 振动工程学报, 2012, 25(2): 199–205.
Chen Xuefeng, Yang Zhibo, Tian Shaohua, et al. A review He Tian, Xiao Denghong, Liu Xiandong, et al. Research
of the damage detection and health monitoring for com- of acoustic emission source location based on near-field
posite structures[J]. Journal of Vibration, Measurement & beamforming[J]. Journal of Vibration Engineering, 2012,
Diagnosis, 2018, 38(1): 1–10, 202. 25(2): 199–205.
[2] Yang H, Yang L, Yang Z, et al. Ultrasonic detection meth- [15] Xiao D, He T, Pan Q, et al. A novel acoustic emission
ods for mechanical characterization and damage diagnosis beamforming method with two uniform linear arrays on
of advanced composite materials: a review[J]. Composite plate-like structures[J]. Ultrasonics, 2014, 54(2): 737–745.
Structures, 2023, 324: 117554.