Page 248 - 《应用声学》2025年第1期
P. 248

244                                                                                  2025 年 1 月


                 Proceedings of the second joint 24th annual conference  [23] Ningthoujam A, Sharma R K. Classification of healthy,
                 and the annual fall meeting of the biomedical engineering  insomnia and other pathological voice samples[C]//2020
                 society. IEEE, 2002: 182–183.                     First IEEE International Conference on Measurement,
             [11] Chen L L, Chen J J. Deep neural network for automatic  Instrumentation, Control and Automation (ICMICA).
                 classification of pathological voice signals[J]. Journal of  IEEE, 2020: 1–6.
                 Voice, 2022, 36(2): 288. e15–288. e24.         [24] Gidaye G, Nirmal J, Ezzine K, et al. Application of glot-
             [12] Kadiri S R, Alku P. Analysis and detection of pathological  tal flow descriptors for pathological voice diagnosis[J]. In-
                 voice using glottal source features[J]. IEEE Journal of Se-  ternational Journal of Speech Technology, 2020, 23(1):
                 lected Topics in Signal Processing, 2019, 14(2): 367–379.  205–222.
             [13] Belabbas S, Addou D, Selouani S A. Pathological voice  [25] Di Cesare M G, Perpetuini D, Cardone D, et al. As-
                 classification system based on CNN-BiLSTM network us-  sessment of voice disorders using machine learning and
                 ing speech enhancement and multi-stream approach[J].  vocal analysis of voice samples recorded through smart-
                 International Journal of Speech Technology, 2024, 27(2):  phones[J]. BioMedInformatics, 2024, 4(1): 549–565.
                 483–502.                                       [26] Sefara T J, Engelbrecht A P, Cloete I. Towards multiclass
             [14] Zhao D H, Qiu Z X, Jiang Y J, et al. A depthwise separa-  classification of pathological voice disorders using support
                 ble CNN-based interpretable feature extraction network  vector machines[C]//Proceedings of the 2017 IEEE Inter-
                 for automatic pathological voice detection[J]. Biomedical  national Conference on Computer and Information Tech-
                 Signal Processing and Control, 2024, 88: 105624.  nology (CIT). IEEE, 2017: 1–6.
             [15] Cordeiro H, Fonseca J, Guimaraes I, et al. Voice patholo-  [27] Little M A, Costello D A, Harries M L. Objective dys-
                 gies identification speech signals, features and classi-  phonia quantification in vocal fold paralysis: Comparing
                 fiers evaluation[C]//2015 Signal Processing: Algorithms,  nonlinear, cepstral and spectral features[J]. The Journal of
                 Architectures, Arrangements, and Applications (SPA).  the Acoustical Society of America, 2009, 126(1): 317–326.
                 IEEE, 2015: 81–86.                             [28] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE:
             [16] 曾晓亮, 张晓俊, 吴迪, 等. 利用声带动力学模型参数反演方                  synthetic minority over-sampling technique[J]. Journal of
                 法进行病变嗓音分类 [J]. 声学学报, 2018, 43(1): 91–100.         Artificial Intelligence Research, 2002, 16: 321–357.
                 Zeng Xiaoliang, Zhang Xiaojun, Wu Di, et al. Parameter  [29] Elreedy D, Atiya A F, Kamalov F. A theoretical distribu-
                 inversion method of vocal fold dynamic model in patho-  tion analysis of synthetic minority oversampling technique
                 logical voice classification[J]. Acta Acustica, 2018, 43(1):  (SMOTE) for imbalanced learning[J]. Machine Learning,
                 91–100.                                           2024, 113(7): 4903–4923.
             [17] Eye M, Infirmary E. Voice disorders database, version.  [30] He H B, Bai Y, Garcia E A, et al. ADASYN: Adap-
                 1.03 (cd-rom)[DB/OL]. Lincoln Park, NJ: Kay Elemetrics  tive synthetic sampling approach for imbalanced learn-
                 Corporation, 1994.                                ing[C]//2008 IEEE International Joint Conference on
             [18] Islam R, Tarique M, Abdel-Raheem E. A survey on sig-  Neural Networks (IEEE World Congress on Computa-
                 nal processing based pathological voice detection tech-  tional Intelligence). IEEE, 2008: 1322–1328.
                 niques[J]. IEEE Access, 2020, 8: 66749–66776.  [31] Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C.
             [19] Cordeiro H, Fonseca J, Guimarães I, et al.  Hierar-  Safe-level-smote:  Safe-level-synthetic minority over-
                 chical classification and system combination for auto-  sampling technique for handling the class imbalanced
                 matically identifying physiological and neuromuscular la-  problem[C]//Advances in Knowledge Discovery and Data
                 ryngeal pathologies[J]. Journal of Voice, 2017, 31(3):  Mining, 2009: 475–482.
                 384.e9–384.e14.                                [32] Bao Y, Yang S B. Two novel SMOTE methods for solving
             [20] Ariyanti W, Hussain T, Wang J C, et al.  Ensemble  imbalanced classification problems[J]. IEEE Access, 2023,
                 and multimodal learning for pathological voice classifica-  11: 5816–5823.
                 tion[J]. IEEE Sensors Letters, 2021, 5(7): 1–4.  [33] 陈丽萍, 王洪海, 何舒平. 一种基于数据分布的不平衡数据
             [21] Fu D L, Zhang X H, Chen D D, et al. Pathological voice  过采样方法 [J]. 安徽大学学报 (自然科学版), 2024, 48(5):
                 detection based on phase reconstitution and convolutional  26–36.
                 neural network[J]. Journal of Voice, 2022.        Chen Liping, Wang Honghai, He Shuping. An oversam-
             [22] Lee J N, Lee J Y. An efficient SMOTE-based deep learning  pling method for imbalanced data based on data distri-
                 model for voice pathology detection[J]. Applied Sciences,  bution[J]. Journal of Anhui University (Natural Science
                 2023, 13(6): 3571.                                Edition), 2024, 48(5): 26–36.
   243   244   245   246   247   248   249   250   251   252   253