Page 91 - 《应用声学》2025年第1期
P. 91
第 44 卷 第 1 期 方春华等: 高压电缆终端铅封缺陷超声图像卷积神经网络识别 87
Zhou Changcheng, Zhao Haijun, Ren Ping. Improve- Fang Chunhua, Hu Dongsan, Tao Yuning, et al. Ultra-
ment on lead sealing technology of high-voltage cable ac- sonic phased array flexible coupling detection of lead-
cessories[J]. Northeast Electric Power Technology, 2021, sealing defects in high voltage cable terminals[J]. High
42(2): 23–26, 29. Voltage Engineering, 2022, 48(1): 29–37.
[6] 鲁宁. 高压 XLPE 电缆击穿的制造因素分析及有效控制 [J]. [16] 方春华, 胡冻三, 郭凯歌, 等. 高压电缆终端铅封缺陷超声检
电力工程技术, 2017, 36(4): 43–47, 58. 测方法研究 [J]. 中国测试, 2022, 48(3): 118–123.
Lu Ning. Manufacture factor analysis and effective con- Fang Chunhua, Hu Dongsan, Guo Kaige, et al. Research
trol of high voltage XLPE cable breakdown[J]. Electric on ultrasonic testing method for lead sealing defects of
Power Engineering Technology, 2017, 36(4): 43–47, 58. high voltage cable terminals[J]. China Measurement &
[7] 罗俊华, 邱毓昌, 杨黎明. 10 kV 及以上电力电缆运行故障统 Test, 2022, 48(3): 118–123.
计分析 [J]. 高电压技术, 2003, 29(6): 14–16. [17] Masci J, Meier U, Ciresan D, et al. Steel defect clas-
Luo Junhua, Qiu Yuchang, Yang Liming. Operation fault sification with max-pooling convolutional neural net-
analysis of CLPE power cable above 10 kV[J]. High Volt-
works[C]//The 2012 International Joint Conference on
age Engineering, 2003, 29(6): 14–16.
Neural Networks (IJCNN). June 10–15, 2012. Brisbane,
[8] 曹京荥, 查显光, 陈杰, 等. 220 kV 电缆线路终端故障及仿真
Australia. IEEE, 2012.
分析 [J]. 电力工程技术, 2018, 37(6): 151–155.
[18] Faghih-Roohi S, Hajizadeh S, Nunez A, et al. Deep con-
Cao Jingying, Zha Xianguang, Chen Jie, et al. Terminal
volutional neural networks for detection of rail surface de-
fault and simulation analysis of 220 kV cable line[J]. Elec-
fects[C]//2016 International Joint Conference on Neural
tric Power Engineering Technology, 2018, 37(6): 151–155.
Networks (IJCNN). July 24-29, 2016. Vancouver, BC,
[9] 杨金海, 刘雪锋, 余磊. 高压电缆铅封裂纹缺陷检测方法研
Canada. IEEE, 2016.
究 [J]. 大众用电, 2021, 36(8): 41–42.
[19] 马海辉, 余小玲, 吕倩, 等. 一维卷积神经网络在往复式压缩机
[10] 谭杨宝. 110 kV 电缆终端故障分析及防范措施 [J]. 中国高新
气阀故障诊断中的应用 [J]. 西安交通大学学报, 2022, 56(4):
科技, 2018(15): 105–107.
101–108.
[11] 吴广宁. 电气设备状态监测的理论与实践 [M]. 北京: 清华大
Ma Haihui, Yu Xiaoling, Lyu Qian, et al. Application of
学出版社, 2005: 190–207.
one-dimensional convolutional neural network in fault di-
[12] 陈海燕, 李亮, 夏正武, 等. 复合绝缘子内部缺陷超声相控阵
agnosis of reciprocating compressor air valve[J]. Journal
柔性耦合检测 [J]. 高电压技术, 2019, 45(4): 1274–1280.
of Xi’an Jiaotong University, 2022, 56(4): 101–108.
Chen Haiyan, Li Liang, Xia Zhengwu, et al. Inspection
[20] 常海涛, 苟军年, 李晓梅. Faster R-CNN 在工业 CT 图像
of internal defects of composite insulators by ultrasonic
phased array method based on flexible coupling[J]. High 缺陷检测中的应用 [J]. 中国图象图形学报, 2018, 23(7):
Voltage Engineering, 2019, 45(4): 1274–1280. 1061–1071.
[13] 马君鹏, 孙兴涛, 李硕, 等. 基于超声导波的盆式绝缘子缺陷 Chang Haitao, Gou Junnian, Li Xiaomei. Application
of faster R-CNN in image defect detection of indus-
检测及定位 [J]. 高电压技术, 2019, 45(12): 3941–3948.
Ma Junpeng, Sun Xingtao, Li Shuo, et al. Detection and trial CT[J]. Journal of Image and Graphics, 2018, 23(7):
location for defects of basin-type insulator based on ul- 1061–1071.
trasonic guided wave[J]. High Voltage Engineering, 2019, [21] 常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网络 [J]. 自
45(12): 3941–3948. 动化学报, 2016, 42(9): 1300–1312.
[14] 邓红雷, 何战峰, 陈力. 复合绝缘子脱粘缺陷的超声导波检 Chang Liang, Deng Xiaoming, Zhou Mingquan, et al.
测 [J]. 高电压技术, 2019, 45(1): 196–202. Convolutional neural networks in image understanding[J].
Deng Honglei, He Zhanfeng, Chen Li. Inspection of Acta Automatica Sinica, 2016, 42(9): 1300–1312.
debonding defects of composite insulators by ultrasonic [22] 卓维, 张磊. 深度神经网络的快速学习算法 [J]. 嘉应学院学
guide wave[J]. High Voltage Engineering, 2019, 45(1): 报, 2014, 32(5): 13–17.
196–202. Zhuo Wei, Zhang Lei. A fast learning algorithm for deep
[15] 方春华, 胡冻三, 陶玉宁, 等. 高压电缆终端铅封缺陷超声相 neural network[J]. Journal of Jiaying University, 2014,
控阵柔性耦合检测 [J]. 高电压技术, 2022, 48(1): 29–37. 32(5): 13–17.