Page 100 - 《应用声学》2025年第2期
P. 100
360 2025 年 3 月
造的轻量级 EfficientNet-B0-Tuning 网络可以在资 [2] Adavanne S, Drossos K, Çakir E, et al. Convolutional re-
源有限的情况下,在边缘设备上实现快速的鸟声识 current neural networks for bird audio detection[C]// 2017
25th European Signal Processing Conference (EUSIPCO),
别,为在生物多样性监测设备上部署声学识别模型
Kos, GR, 2017: 1744–1748.
提供了技术支持。 [3] Kahl S, Wilhelm-Stein T, Hussein H, et al. Large-scale
bird sound classification using convolutional neural net-
表 8 在龙芯 2K1000LA 上平均推理时间
works[C]// Conference and Labs of the Evaluation Forum
Table 8 Average inference time on
2017. Amsterdam, NL, 2017: 1–14.
2K1000LA [4] Zhang C, Jiang W, Zhao Q, et al. Semantic segmentation
of aerial imagery via split-attention networks with disen-
模型 参数量/M 推理时间/s tangled nonlocal and edge supervision[J]. Remote Sensing,
EfficientNet-B0 5.3 0.41 2021, 13(6): 1176.
EfficientNet-B0-Tuning1 3.0 0.24 [5] Brock A, De S, Smith S L, et al. High-performance large-
scale image recognition without normalization[C]// Pro-
EfficientNet-B0-Tuning2 2.2 0.19
ceedings of the 38th International Conference on Machine
EfficientNet-B0-Tuning3 1.5 0.13 Learning (PMLR), 2021, 139: 1059–1071.
[6] Xie S, Girshick R, Dollar P, et al. Aggregated residual
4 结论 transformations for deep neural networks[C]// 2017 IEEE
Conference on Computer Vision and Pattern Recognition
针对被动鸟声检测的应用场景,特别是边缘设 (CVPR), Honolulu, HI, USA, 2017: 5987–5995.
[7] Liu Z, Mao H, Wu C Y, et al. A ConvNet for the
备上的需求,本研究提出了一种轻量级鸟声识别方
2020s[C]// 2022 IEEE Conference on Computer Vision
法。首先,在网络结构化剪枝技术基础上,提出一种 and Pattern Recognition (CVPR), arXiv: 2201.03545,
基于逆背包准则进行 EfficientNet-B0 网络的逐步 2022.
[8] Wang Y, Li S X, Zhang H, et al. A lightweight CNN-
剪枝方法。在推理上通过二级泰勒展开使用训练损
based model for early warning in sow oestrus sound mon-
失来近似替代精度损失,再从损失中得到校准系数, itoring[J]. Ecological Informatics, 2022, 72: 101863.
从而较快完成通道掩码剪枝。然后,提出一种加入 [9] Wang Y, Zhou J G, Zhang C Y, et al. Bird object detec-
tion: dataset construction, model performance evaluation,
内部蒸馏损失分量的微调方法,将原基础网络知识
and model lightweighting[J]. Animals, 2023, 13(18): 2924.
转移到剪切后模型中。其中,内部蒸馏损失分量通 [10] Incze A, Jancso H B, Szilagyi Z, et al. Bird sound recogni-
过计算 MBConv 模块间的损失变化,在微调中达到 tion using a convolutional neural network[C]// 2018 IEEE
衡量模型全局损失的目的。实验表明,所提出的方 16th International Symposium on Intelligent Systems and
Informatics (SISY), Subotica, SA, 2018: 295–300.
法不仅能够保持高识别精度,还能显著降低模型的 [11] Hu S P, Chu Y H, Tang L, et al. A lightweight multi-
大小和计算复杂度,使其更适合资源受限的环境。 sensory field-based dual-feature fusion residual network
在权衡计算效率与精度上,本文实验中发现,选 for bird song recognition[J]. Applied Soft Computing,
2023, 146: 110678.
择对复杂度高的深层网络进行压缩,要比直接选择
[12] Molchanov P, Mallya A, Tyree S, et al. Importance esti-
简单网络可以获得更好的识别精度。与传统基准网 mation for neural network pruning[C]//2019 IEEE/CVF
络相比较,本文方法得到的轻量级网络在相同规模 Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 2019: 11256–11264.
条件下,在鸟声时频图分类精度上展示了其优越性,
[13] Bai H, Wu J, King I, et al. Few shot network compression
可推广至其他声音事件识别的应用领域。但值得注 via cross distillation[C]// Proceedings of the AAAI Con-
意的是,本文方法在获得了通道稀疏度较高、结构 ference on Artificial Intelligence. New York, USA, 2020:
3203–3210.
稳定的网络结构的同时,网络调整的计算量仍较大,
[14] Aguilar G, Ling Y, Zhang Y, et al. Knowledge distilla-
这是未来研究的一个方向。 tion from internal representations[C]// Proceedings of the
AAAI Conference on Artificial Intelligence. New York,
USA, 2020: 7350–7357.
参 考 文 献 [15] Xie J, Zhao S, Li X, et al. KD-CLDNN: Lightweight au-
tomatic recognition model based on bird vocalization[J].
[1] Kahl S, Wood C M, Eibl M, et al. BirdNET: A deep learn- Applied Acoustics, 2022, 188: 108550.
ing solution for avian diversity monitoring[J]. Ecological [16] Tan M, Le Q V. EfficientNet: Rethinking model scaling
Informatics, 2021, 61(7): 101236. for convolutional neural networks[J]. arXiv: 1905.11946,