Page 100 - 《应用声学》2025年第2期
P. 100

360                                                                                  2025 年 3 月


             造的轻量级 EfficientNet-B0-Tuning 网络可以在资                   [2] Adavanne S, Drossos K, Çakir E, et al. Convolutional re-
             源有限的情况下,在边缘设备上实现快速的鸟声识                                current neural networks for bird audio detection[C]// 2017
                                                                   25th European Signal Processing Conference (EUSIPCO),
             别,为在生物多样性监测设备上部署声学识别模型
                                                                   Kos, GR, 2017: 1744–1748.
             提供了技术支持。                                            [3] Kahl S, Wilhelm-Stein T, Hussein H, et al. Large-scale
                                                                   bird sound classification using convolutional neural net-
                  表 8  在龙芯 2K1000LA 上平均推理时间
                                                                   works[C]// Conference and Labs of the Evaluation Forum
                Table 8    Average inference time on
                                                                   2017. Amsterdam, NL, 2017: 1–14.
                2K1000LA                                         [4] Zhang C, Jiang W, Zhao Q, et al. Semantic segmentation
                                                                   of aerial imagery via split-attention networks with disen-
                       模型            参数量/M      推理时间/s             tangled nonlocal and edge supervision[J]. Remote Sensing,
                   EfficientNet-B0        5.3       0.41             2021, 13(6): 1176.
                EfficientNet-B0-Tuning1   3.0       0.24           [5] Brock A, De S, Smith S L, et al. High-performance large-
                                                                   scale image recognition without normalization[C]// Pro-
                EfficientNet-B0-Tuning2   2.2       0.19
                                                                   ceedings of the 38th International Conference on Machine
                EfficientNet-B0-Tuning3   1.5       0.13             Learning (PMLR), 2021, 139: 1059–1071.
                                                                 [6] Xie S, Girshick R, Dollar P, et al. Aggregated residual
             4 结论                                                  transformations for deep neural networks[C]// 2017 IEEE
                                                                   Conference on Computer Vision and Pattern Recognition
                 针对被动鸟声检测的应用场景,特别是边缘设                              (CVPR), Honolulu, HI, USA, 2017: 5987–5995.
                                                                 [7] Liu Z, Mao H, Wu C Y, et al.  A ConvNet for the
             备上的需求,本研究提出了一种轻量级鸟声识别方
                                                                   2020s[C]// 2022 IEEE Conference on Computer Vision
             法。首先,在网络结构化剪枝技术基础上,提出一种                               and Pattern Recognition (CVPR), arXiv: 2201.03545,
             基于逆背包准则进行 EfficientNet-B0 网络的逐步                         2022.
                                                                 [8] Wang Y, Li S X, Zhang H, et al. A lightweight CNN-
             剪枝方法。在推理上通过二级泰勒展开使用训练损
                                                                   based model for early warning in sow oestrus sound mon-
             失来近似替代精度损失,再从损失中得到校准系数,                               itoring[J]. Ecological Informatics, 2022, 72: 101863.
             从而较快完成通道掩码剪枝。然后,提出一种加入                              [9] Wang Y, Zhou J G, Zhang C Y, et al. Bird object detec-
                                                                   tion: dataset construction, model performance evaluation,
             内部蒸馏损失分量的微调方法,将原基础网络知识
                                                                   and model lightweighting[J]. Animals, 2023, 13(18): 2924.
             转移到剪切后模型中。其中,内部蒸馏损失分量通                             [10] Incze A, Jancso H B, Szilagyi Z, et al. Bird sound recogni-
             过计算 MBConv 模块间的损失变化,在微调中达到                            tion using a convolutional neural network[C]// 2018 IEEE
             衡量模型全局损失的目的。实验表明,所提出的方                                16th International Symposium on Intelligent Systems and
                                                                   Informatics (SISY), Subotica, SA, 2018: 295–300.
             法不仅能够保持高识别精度,还能显著降低模型的                             [11] Hu S P, Chu Y H, Tang L, et al. A lightweight multi-
             大小和计算复杂度,使其更适合资源受限的环境。                                sensory field-based dual-feature fusion residual network
                 在权衡计算效率与精度上,本文实验中发现,选                             for bird song recognition[J]. Applied Soft Computing,
                                                                   2023, 146: 110678.
             择对复杂度高的深层网络进行压缩,要比直接选择
                                                                [12] Molchanov P, Mallya A, Tyree S, et al. Importance esti-
             简单网络可以获得更好的识别精度。与传统基准网                                mation for neural network pruning[C]//2019 IEEE/CVF
             络相比较,本文方法得到的轻量级网络在相同规模                                Conference on Computer Vision and Pattern Recognition
                                                                   (CVPR), Long Beach, CA, USA, 2019: 11256–11264.
             条件下,在鸟声时频图分类精度上展示了其优越性,
                                                                [13] Bai H, Wu J, King I, et al. Few shot network compression
             可推广至其他声音事件识别的应用领域。但值得注                                via cross distillation[C]// Proceedings of the AAAI Con-
             意的是,本文方法在获得了通道稀疏度较高、结构                                ference on Artificial Intelligence. New York, USA, 2020:
                                                                   3203–3210.
             稳定的网络结构的同时,网络调整的计算量仍较大,
                                                                [14] Aguilar G, Ling Y, Zhang Y, et al. Knowledge distilla-
             这是未来研究的一个方向。                                          tion from internal representations[C]// Proceedings of the
                                                                   AAAI Conference on Artificial Intelligence. New York,
                                                                   USA, 2020: 7350–7357.
                            参 考     文   献                       [15] Xie J, Zhao S, Li X, et al. KD-CLDNN: Lightweight au-
                                                                   tomatic recognition model based on bird vocalization[J].
              [1] Kahl S, Wood C M, Eibl M, et al. BirdNET: A deep learn-  Applied Acoustics, 2022, 188: 108550.
                 ing solution for avian diversity monitoring[J]. Ecological  [16] Tan M, Le Q V. EfficientNet: Rethinking model scaling
                 Informatics, 2021, 61(7): 101236.                 for convolutional neural networks[J]. arXiv: 1905.11946,
   95   96   97   98   99   100   101   102   103   104   105